US009086889B2

a2 United States Patent 10) Patent No.: US 9,086,889 B2
Karlsson et al. (45) Date of Patent: Jul. 21, 2015
(54) REDUCING PIPELINE RESTART PENALTY 6,643,745 B1* 11/2003 Palancaetal. 711/138
6,735,687 B1* 5/2004 .. 712/215
s . 7,188,234 B2* 3/2007 Wuetal ...ccooovvvnennn. 712/225
(75) Inventors: Martin Karlsson, Sa.n Francisco, CA 7373482 Bl 57008 Spliaik?en otal
(US); Sherman H. Yip, Sunnyvale, CA 7,571,304 B2 82009 Chaudhry et al.
(US); Shailender Chaudhry, San 7,836,281 B1* 11/2010 Tremblay et al. 712/220
Francisco, CA (US) 2002/0055964 A1* 52002 Luketal. 700/107
2004/0133769 Al* 7/2004 Chaudhry et al. ... 712/233
. . . 2004/0148491 Al* 7/2004 Damron 712/34
(73) Assignee: Oracle International Corporation, 2004/0154011 Al* 82004 Wang etal ... 717/158
Redwood Shores, CA (US) 2007/0022412 Al 1/2007 Tirumalai et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 1172 days.
Chaudhry, Shailender, et al., “Simultaneous Speculative Threading:
(21) Appl. No.: 12/768,641 A Novel Pipeline Architecture.lmplemented in S}m’s ROCK Proces-
sor,” Jun. 20-24, 2009, Sun Microsystems, Austin, TX, 12 pages.
(22) Filed: Apr. 27, 2010 (Continued)
(65) Prior Publication Data Primary Examiner — William B Partridge
US 2011/0264862 Al Oct. 27, 2011 Assistant Examiner — Keith Nielsen
(74) Attorney, Agent, or Firm — Meyertons, Hood, Kivlin,
(51) Int. CL Kowert & Goetzel, P.C.
GO6F 9/38 (2006.01)
GO6F 12/08 (2006.01) (57) ABSTRACT
(52) US.CL) Techniques are disclosed relating to reducing the latency of
CPC oovvenn. Go6F .9 /3851 (2013.01); GOGF .9 /3802 restarting a pipeline in a processor that implements scouting.
(2013.01); G06E 9/3808 (2013.01); G06Pj In one embodiment, the processor may reduce pipeline restart
9/3842 (2013.01); GOGF 9/. .3859 (2013.01); latency using two instruction fetch units that are configured to
GOGF 9/3863 (2013.01); GOGF 12/0855 fetch and re-fetch instructions in parallel with one another. In
. . . (2013.01) some embodiments, the processor may reduce pipeline restart
(58) Field of Classification Search latency by initiating re-fetching instructions in response to
CPC ... GOGF 9/3808; GOGF 9/3851; GOGF 9/3842 determining that a commit operation is to be attempted with
USPC TR 7.1 2/205-207 respect to one or more deferred instructions. In other embodi-
See application file for complete search history. ments, the processor may reduce pipeline restart latency by
. initiating re-fetching instructions in response to receiving an
(56) References Cited indication that a request for a set of data has been received by
U.S. PATENT DOCUMENTS a cache.:, .Where the indicatior.l is sent by the cache before
determining whether the data is present in the cache or not.
5,170,476 A * 12/1992 Laaksoetal. 711/140
6,044,220 A * 3/2000 Breternitz, Jr. 717/139 21 Claims, 12 Drawing Sheets
600
\
Fetch Instructions
of Thread
610

Receive Indication
that Thread has Begun
Executing in Scouting
Phase
620

Initiate Re-fetching One
or More Instructions of
Thread Using a
Fetch Unit
630

fetched Instructions

Initiate Execution of Re-

US 9,086,889 B2
Page 2

(56)

2008/0005534 Al* 1/2008 Jourdanetal.
2008/0016325 Al* 1/2008 Laudonetal. ..
2008/0162818 Al* 7/2008 Okawaetal. ...
2008/0209177 Al* 8/2008 Frommer et al.

2009/0063899 Al* 3/2009 Jordanetal.

References Cited

U.S. PATENT DOCUMENTS

2009/0172361 Al* 7/2009 Holloway etal. 712/220

OTHER PUBLICATIONS
Tremblay, Marc and Chaudhry, Shailender, “A Third-Generation

...... 712/206 65nm 16-Core 32-Thread Plus 32-Scout-Thread CMT SPARC® Pro-
7120217 cessor,” 2008, IEEE International Solid-State Circuits Conference,
. TLL122 Sun Microsystems, Santa Clara, CA, 2 pages.

712/214

......... 714/17 * cited by examiner

US 9,086,389 B2

Sheet 1 of 12

Jul. 21, 2015

U.S. Patent

} "Old

upol | fwool 001 | | 800} P0O0L | 1900} qool | | ool
u L-u [v € 4 2 0
8109 | | 8109] 8100 | | 8109 8400 | | 10D 8109 | | 840D
usol | |wsoL G501 | | 990} pPsoL | | 250! qsol | | es0l
c1 Z1 c1 Al Z1 c1 Al Z1
\) \) /) \) /)
OLL JBeqssotn
A A A A A A A A
02T 8yoeD £7 San
) /\ \ T
ol p—
J0SS80014 G2 [100UU02IBIU| WBISAS
A A
orl 051 09!
9 S S
(s)ooeLiou] 0¢L QEREIR] (QEREE]
J0SS890.4 U880 (s)ooeLio)U] Alowopy jeJjoydusd NIOMION
/) /Y \ \
\ \ 4 y y
$10SS820id Aiowopy s82Ineg $IOM)ON
VE) WojSAS jesoydusd Lo4/o |
wouy/o | Wwo.y/o | wo.y/o |

U.S. Patent Jul. 21, 2015 Sheet 2 of 12 US 9,086,889 B2

(=
()

Core 1

200

y

Instruction v L
Trap Fetch Unit Manggleor;) }é nt

LogZI%J nit Instr. Cache > Unit
— 205 270

Yy

\i
Select Unit
210

y

Decode Unit
215

Rename Unit
220

!

Pick Unit
225

!

Issue Unit
230

! :

L L Load Store Unit N
Execution Execution 245 Floating Point/

Unit 0 Unit 1 Graphics Unit
235 240 Data cache 255
250

! !

Working L2
Register File Interface
260 265

4

v
To/from
L2

FIG. 2

U.S. Patent Jul. 21, 2015 Sheet 3 of 12 US 9,086,889 B2

Core 300 \

Execution Pipeline 310
Commit Instruction Instruction
Unit »| Fetch Unit »| Fetch Unit
320 312A 312B
i i
Decode Decode
Unit Unit
314A 3148
Y Y
Instruction Instruction
Buffer Buffer
316A 316B
i i
Issue Unit
318

U.S. Patent Jul. 21, 2015 Sheet 4 of 12 US 9,086,889 B2
Core 400 \
Execution Pipeline 410

Commit Instruction Instruction

Unit » Fetch Unit » Fetch Unit

420 412A 412B

i ‘ ‘

Deferred
Queue(s) V| L.

430

Issue Unit

418

U.S. Patent Jul. 21, 2015 Sheet 5 of 12 US 9,086,889 B2

Processor 10 \
Core 5

©
o

Execution Pipeline
210

commit Instruction
Unit » Fetch Unit
920 212

l

Memory
Interface
Unit
214

Cache Cache
5308 530A

FIG. 5

U.S. Patent Jul. 21, 2015

600
\

Sheet 6 of 12

Fetch Instructions
of Thread
610

Y

Receive Indication
that Thread has Begun
Executing in Scouting
Phase
620

Y

Initiate Re-fetching One
or More Instructions of
Thread Using a
Fetch Unit
630

Y

Initiate Execution of Re-
fetched Instructions
640

FIG. 6A

US 9,086,389 B2

US 9,086,389 B2

Sheet 7 of 12

Jul. 21, 2015

U.S. Patent

q9 ‘Old

4 ejed o}

ang Aejdey

JUILI00

a¢<iis 6l

24€ 94 'G1 ppe gl

(9) 100 Gl ISUOO+ES P 29I
L OQg woly Aeida

peaiyl puysg

oY

aezis el

14 ¢ 94 ‘e ppe :gf

() jenusod Qu & 1SUOD+p pf 2]
(9) 1800 Gl & }SU0I+¢4 P 19[4

by pr Ll
dooy jo doj 03 yoBq 6449 €L
Z O ui paoejd sajqeirsjop 1

v

6/ <0 ‘94 dwo :Z4i]

8I€IPIiLL

JSU02+84 Yyo3o04d [0 LI

a < L4is 6!

i€ 94 ‘gappe g1

(4) renueiod QU ISUOD+1I Pf /1

peaiy pesyy

(9) 100 GI& ISU0D+Ed Pl 9]
L O ui pooeid sojqedrajop

p1 €0 pl Gl

gl&gpl

ybno.yj-jje} 244q gl

g | ‘P dwo g

| doojjo do LY Pl

swil

Buiyorej-ay

8jeniuj pue sseyd
Bunnoos Jojug

-+- SSIN ayoen

juiodsiosy)
aAneinoads

juiodsoayd

\

-

sassiyy ayoen

II

a/qeriagad
se payiepy
aie pjog ui
suoponysuf

/ 0589

U.S. Patent Jul. 21, 2015 Sheet 8 of 12 US 9,086,889 B2

700
\

Execute Ahead and
Behind Threads
710

Y

Transition to Executing
Ahead Thread in
Scouting Phase
720

Y

Receive Indication that
Commit Operation Is to
Be Attempted
730

Y

Initiate Re-fetching
One or More Instructions
of Ahead Thread Prior
to Commit Operation
Being Attempted
740

Y

Initiate Execution of Re-
fetched Instructions
750

FIG. 7A

US 9,086,389 B2

Sheet 9 of 12

Jul. 21, 2015

U.S. Patent

g/ ‘Old

suonRonsSul
Buiyozoy
-0y 8jeniu|

14 ejeq o1
anq Aejday

~

T 1€ Q4 ‘Gl ppe gl
(9) ys00 QU JSU0O+84 Pl (9]
L Og wouy Aejdau

peaiy] puiyeg

paydwany
uonessdo
Juwwon M
JLILIOD o]
~——— g€ 243s 6l a ¢ 243s 6l

L4 < 94 ‘G4 ppe :gf
(1) renuajod 9 & jsu0o+pd pf 4l

(9) 3800 G & }sU09+84 P 94
Ly pl LS
dooj jo doj 0} yoeq B4.4q €L

Z OQ ui paoejd sejqe.riagep 1

J

6 €0 ‘g dwo :z}1)

peaiy] pesyy

8l &I PILL

JSU0o+84 yo38j8.d (0 LI

a<./4)s 61

i€ 94 ‘1 ppe g1

(4) jenusjod QU JSUCO+pI P 11

(9) }s00 GIE-JSUOI+EI PI 91
L OQ ul paoeld sajqerdop

#1 €O P Gl

el<gpl iyl

ybnoyy-e; c44q gl

gi& L L dwo g

| dooy jo doj LY Pl L

aul|

aselyd

Buinnooag Jsjug

-+ |m SSIpy 8yoe) v

Ju0dx28Y9H
anljeinoads

h ju0dy29y9 u
\\
= lm sessipy ayoe) u

ajqesiasg
se payiep
ale pjog ui
suonondsuj

4ﬂ 094

U.S. Patent

Jul. 21, 2015 Sheet 10 of 12 US 9,086,389 B2

800
\

Response to Instruction

Execute First Thread
in Scouting Phase in

Causing a Miss in First
Cache for Set of Data
810

A

Send Request for Set of

Data to Second Cache
820

Y

Initiate Re-fetching
the Instruction in
Response to Receiving
Indication that Request
Has Been Received
by Second Cache
830

A 4

A 4

Exit Scouting Phase and
Initiate Execution of Re-
fetched Instructions
850

Continue Executing in
Scout Phase
860

FIG. 8A

US 9,086,389 B2

Sheet 11 of 12

Jul. 21, 2015

U.S. Patent

g8 old

Il'4 ejed 03

eng Aejdey

(9) 1800

NLILOD

a€243s 6l

LI 94 ‘G ppe gl
GIEJSU0D+EI P] 29!

L OQq wiols Aejdau

peaiyy puiyag

o\

a<z43s:6f
14 €94 ‘G ppe :gly
(4) renusjod 94 «JSUOO+pd PI 4T

(9) 3500 G1 € 3SU0I+gi p| 19[4
ey ploLf
dooj jo doj 03 yoeq 6449 £L1

Z O ut paoejd sojqeliogop 1

64 €0 ‘94 dwd :Z i

84 &I Pl L
JSUOD+8. yoegeid (g Li
a<.i)s ‘6!

1€ 94 ‘61 ppe 8

peaiy | pesyy

(4) renuejod QU JSUCI+EI pf 11

(9) 1800 Gl JSU0I+E1 P] 191 ﬁ i
L OQa ul peoeid sejqe.riagop

pl €D Pl Gl

gl&gpl iyl

ybnouyy-jey 214q gl

Zi& L L dwo iz

| dooyjo doy Ly Pl L

awi]

suonanisu)

Buryojsy
-8 djeniu|

aseyd
Bunnoog Jspug

= |A ssiy ayoed)

wiodsosy)
aAileINo8dsS

A wiodyoeyn)
R4
= lh Sassi syoen v

sjqeLriageqg
se payiep
ale pjog ui
suoRonsuy

/Qmm

U.S. Patent Jul. 21, 2015 Sheet 12 of 12 US 9,086,889 B2
System 900
/\%%%@ Pro;:ggsor
910 —
A
y ¥
Boot Peripheral
Device -~ P ro;:ggsor » Storage Device
930 — 920
J
Y
Network
940
A
y
Computer
System
9350

FIG. 9

US 9,086,889 B2

1
REDUCING PIPELINE RESTART PENALTY

BACKGROUND

1. Technical Field

This disclosure relates to computer processors, and more
specifically to reducing a restart latency in a processor.

2. Description of the Related Art

In executing a computer program, program order is gener-
ally followed in order to ensure correct results. Thus, when a
first instruction is followed by a second instruction that
depends on the first instruction’s result, the execution of the
second instruction is not completed until the first instruction’s
result becomes available. Sometimes a result will be available
almost immediately. Other times, a result may take hundreds
of processor cycles to become available—for example, in the
case of a memory load that misses a data cache (e.g., an [.1
cache) and must retrieve the desired data from elsewhere in
the memory hierarchy (e.g., an 1.2 cache, main memory, etc.).
One option in response to a lengthy delay in obtaining results
(e.g., a memory cache miss) is to stall. Other options may
include executing instructions speculatively or performing
“scouting.”

To perform scouting, a processor executes one or more
scouting threads to prefetch data for a main thread. The scout-
ing threads may differ from the main thread in that the scout-
ing threads may include only the instructions that are relevant
for calculating memory addresses and issuing cache requests.
Results of these scouting threads are not committed, however.
When a scouting thread is executed, the scouting thread may
not stall upon encountering a cache miss but rather may
continue to execute as though the cache miss did not occur. By
doing so, the scouting thread causes multiple cache requests
to be issued and serviced in parallel, instead of sending
requests and servicing them sequentially. The cost of servic-
ing multiple cache requests can thus be amortized.

SUMMARY

Techniques and structures are disclosed herein that allow a
processor that implements scouting to reduce the latency of
restarting a pipeline. In one embodiment, a processor is dis-
closed that includes a first instruction fetch unit configured to
initiate re-fetching one or more instructions of a thread in
response to receiving an indication that the thread has begun
executing in a scouting phase. The first instruction fetch unit
is configured to initiate the re-fetching of the one or more
instructions of the thread prior to the thread ending the scout-
ing phase. In one embodiment, the first instruction fetch unit
is configured to alternate between fetching instructions of the
thread that are to be executed in the scouting phase and the
re-fetching of the one or more instructions of the thread that
are to be executed after the thread ends the scouting phase. In
one embodiment, the processor includes a second instruction
fetch unit configured to operate in parallel with the first
instruction unit and to fetch instructions of the thread that are
to be executed during the scouting phase.

In another embodiment, a processor is disclosed that
includes a first instruction fetch unit configured to fetch
instructions for execution and a control unit. The processor is
configured to execute instructions for an ahead thread and a
behind thread. The processor is configured to initiate execut-
ing the ahead thread in a scouting phase. The control unit is
configured to receive an indication that a commit operation is
to be attempted with respect to one or more deferred instruc-
tions of the behind thread. The control unit is further config-
ured to initiate, prior to the commit operation being

10

15

20

25

30

35

40

45

50

55

60

65

2

attempted, fetching one or more instructions of the ahead
thread that were previously fetched while the processor was
executing the ahead thread in the scouting phase.

In still another embodiment, a processor is disclosed that
includes a first instruction fetch unit and a memory interface
unit. The processor is configured to execute a thread in a
scouting phase in response to an instruction in the thread
causing a miss in a first cache for a set of data. The memory
interface unit is configured to send, in response to the miss in
the first cache, a request for the set of data to a second cache.
The first instruction fetch unit is configured to initiate re-
fetching the instruction in response to receiving an indication
that the request has been received by the second cache, where
the instruction fetch unit is configured to begin the re-fetching
prior to the second cache completing the request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating one embodiment of a
processor.

FIG. 2 is a block diagram illustrating one embodiment of a
processor core.

FIG. 3 is a block diagram illustrating one embodiment of a
processor core configured to reduce pipeline restart latency
by initiating re-fetching instructions in response to determin-
ing to execute a thread in a scouting phase.

FIG. 4 is a block diagram illustrating one embodiment of a
processor core configured to reduce pipeline restart latency
by initiating re-fetching instructions in response to determin-
ing that a commit operation is to be attempted with respect to
one or more deferred instructions.

FIG. 5 is a block diagram illustrating one embodiment of a
processor core configured to reduce pipeline restart latency
by initiating re-fetching instructions in response to receiving
an indication that a request for a set of data has been received
by a cache.

FIG. 6A is a block diagram illustrating one embodiment of
a method for reducing pipeline restart latency by initiating
re-fetching instructions in response to determining to execute
a thread in a scouting phase.

FIG. 6B is an example of reducing pipeline restart latency
by initiating re-fetching instructions in response to determin-
ing to execute a thread in a scouting phase.

FIG. 7A is a block diagram illustrating one embodiment of
a method for reducing pipeline restart latency by initiating
re-fetching instructions in response to determining that a
commit operation is to be attempted with respect to one or
more deferred instructions.

FIG. 7B is an example of reducing pipeline clear latency by
re-fetching instructions in response to determining that a
commit operation is to be attempted with respect to one or
more deferred instructions.

FIG. 8A is a block diagram illustrating one embodiment of
a method for reducing pipeline restart latency by initiating
re-fetching instructions in response to receiving an indication
that a request for a set of data has been received by a cache.

FIG. 8B is an example of reducing pipeline restart latency
by initiating re-fetching instructions in response to receiving
an indication that a request for a set of data has been received
by a cache.

FIG. 9is ablock diagram of one embodiment of a computer
system.

DETAILED DESCRIPTION

This specification includes references to “one embodi-
ment” or “an embodiment.” The appearances of the phrases

US 9,086,889 B2

3

“in one embodiment™ or “in an embodiment” do not neces-
sarily refer to the same embodiment. Particular features,
structures, or characteristics may be combined in any suitable
manner consistent with this disclosure.

Terminology. The following paragraphs provide defini-
tions and/or context for terms found in this disclosure (includ-
ing the appended claims):

“Comprising.” This term is open-ended. As used in the
appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “An appara-
tus comprising one or more processor units. . .. Such a claim
does not foreclose the apparatus from including additional
components (e.g., a network interface unit, graphics circuitry,
etc.).

“Configured To.” Various units, circuits, or other compo-
nents may be described or claimed as “configured to” perform
a task or tasks. In such contexts, “configured to” is used to
connote structure by indicating that the units/circuits/compo-
nents include structure (e.g., circuitry) that performs those
task or tasks during operation. As such, the unit/circuit/com-
ponent can be said to be configured to perform the task even
when the specified unit/circuit/component is not currently
operational (e.g., is not on). The units/circuits/components
used with the “configured to” language include hardware—
for example, circuits, memory storing program instructions
executable to implement the operation, etc. Reciting that a
unit/circuit/component is “configured to” perform one or
more tasks is expressly intended not to invoke 35 U.S.C.
§112, sixth paragraph, for that unit/circuit/component.

“Thread.” As used herein, this term refers broadly to a set of
instructions within a program that is executable by a proces-
sor. The term “thread” is thus used herein to indicate a group
of instructions generally (e.g., a sequence of instructions),
and is not limited for example, to a group of instructions
executing on a processor as a result of a “fork™ or other similar
operation.

“Scouting.” This term has its ordinary and accepted mean-
ing in the art, and includes executing instructions without
committing their results in order to cause the prefetching of
data for instructions that would otherwise result in a cache
miss.

“Scouting Phase.” This term refers to a time period in
which a processor (or cores within the processor) performs
scouting. Alternatively, “non-scouting phase” refers to a time
period in which a processor is not performing scouting and is
thus committing results of executed instructions. The phrase
“instructions executed in a scouting phase” refers to instruc-
tions that are executed in order to perform scouting, but the
results of those executed instructions are not committed. Dif-
ferent instances of executing in scouting may be referred to as
different instances of scouting phases—e.g., a first scouting
phase, a second scouting phase, etc. During a given scouting
phase, the processor can be said to be executing in a “scouting
mode.”

“Scouting Thread.” This term is has its ordinary and
accepted meaning in the art, and includes a thread that
includes instructions that are executed in a scouting phase.
Alternatively, a “non-scouting thread” refers to a thread that is
not executing in scouting phase.

“Speculative Execution.” This term refers to executing
instructions out of order, where the results of each executed
instruction are committed speculatively until the results of
instructions on which that instruction depends are committed.
Accordingly, the results of a particular instruction may not be
committed if the results of another instruction on which that
particular instruction depends are not committed. Note that

10

15

20

25

30

35

40

45

50

55

60

65

4

“speculative execution” differs from “scouting” in that results
of instructions executed in a scouting phase are not commit-
table.

“Speculative Phase.” This phrase refers to a time period in
which a processor (or cores within the processor) performs
speculative execution, where results of executed instructions
are committable.

“Deferred instruction”; ‘“Non-deferred instruction.” As
used herein, a “deferred” instruction is an instruction that
cannot yet be executed because it is waiting for data that is not
yet available. As one example, an instruction that causes a
cache miss may be a deferred instruction. A deferred instruc-
tion can also be an instruction that is dependent on an instruc-
tion that is (or was) waiting for data. Continuing with the
above example, an instruction that is dependent on the
instruction that causes a cache miss is also a deferred instruc-
tion (this instruction may continue to be referred to as a
deferred instruction even after the cache miss instruction is
executed, in order to differentiate the dependent instructions
from one or more instructions that were not dependent on the
cache miss instruction). In contrast, a “non-deferred” instruc-
tion is an instruction that is not waiting for data in order to be
executed.

“Checkpoint.” This term refers to a point in time at which
a condition occurs that causes a processor (or cores within a
processor) to save information that preserves an architectural
state of the processor (and may include values for all archi-
tected registers specified by an instruction set). The phrase
“taking a checkpoint” refers to saving at least a portion of an
architectural state of the processor so that execution can later
be resumed by using these saved values.

“Behind thread”; “Ahead thread.” As used herein, these
terms refer to two different threads being executed by a pro-
cessor. At a given point in time, the “behind” thread is the one
of the two different threads that includes the earliest (in pro-
gram order) uncompleted instruction; the other thread at the
given point in time is thus the “ahead” thread. Consider an
example in which a checkpoint is taken due to an instruction
that causes a cache miss. After the checkpoint is taken, the
“ahead” thread includes instructions that are later in program
order relative to the instruction that caused the cache miss.
Conversely, at the time the checkpoint is taken, the “behind”
thread includes at least one instruction that is earlier in pro-
gram order than all of the instructions in the ahead thread.
Thus, the behind thread may include the instruction that
caused the cache miss. The behind thread may also include
instructions that depend on the instruction that caused the
cache miss. Stated another way, at the time a checkpoint is
taken, the thread that includes the non-deferred instructions is
the ahead thread, and the thread that includes the deferred
instructions is the behind thread. Note that as instructions in
what are initially termed the “ahead” and “behind” threads
are executed, the notion of which instructions are in the
“ahead” and “behind” threads may change.

“Commit operation.” This term refers to the process of
committing the results of all instructions stored in a given
deferred queue. Consider the situation in which a processor is
executing a behind thread and an ahead thread that writes the
results of its retirable instructions to a current speculative
register file 1 and places its deferrable instructions in the
corresponding deferred queue i (DQ1). At any given time, the
behind thread may attempt to execute instructions from the
oldest DQ. In particular, assuming that the oldest DQ is DQi,
in one embodiment, the behind thread waits until at least one
of the instructions in DQi can be retired, at which point the
behind thread executes all of the instructions from DQ4i, rede-
ferring them as necessary. Once all of the instructions in DQi

US 9,086,889 B2

5

have been speculatively retired, in one embodiment, the com-
mitted checkpoint is discarded, speculative register file i
becomes the new committed checkpoint (as used herein, the
committed checkpoint is the last point in time at which archi-
tectural state is updated), and speculative register file1i is freed
(and can thus be used by the ahead thread when needed). This
operation may be referred to herein as a “commit operation.”
Introduction

Asnoted above, executing instructions speculatively is one
alternative to stalling for a result to become available. In
speculative execution, instructions may be executed in a dif-
ferent order than defined by the program (i.e., executed out of
order), where the results of some executed instructions may
not be used. For example, a processor may begin fetching and
executing instructions that are dependent upon a branch
instruction based on a predicted outcome of that instruction.
If, upon execution of that branch instruction, the processor
determines that it mispredicted the outcome, the processor
will not use the results of those dependent instructions. As
another example, if a thread includes a load instruction that
has caused a cache miss (i.e., the load instruction is a deferred
instruction), the processor may execute instructions that
come after the load instruction in program order if those
instructions are not dependent on the load instruction. The
processor may then execute the load instruction once the
needed data has been retrieved from memory (i.e., the cache
request has been serviced).

In some instances, a processor may execute deferred
instructions and non-deferred instructions within separate
threads referred to herein respectively as an “ahead thread”
and a “behind thread.” By dividing instructions into separate
threads, instructions in the ahead thread can be executed
while the instructions in the behind thread wait for data. When
the data becomes available, the instructions in the behind
thread can begin execution while the ahead thread continues
to execute in parallel. Once the instructions in the behind
thread have been executed and committed, the ahead thread
and behind thread may then be joined back into a single
thread, including the results of both executed threads.

To support speculative execution of instructions, a proces-
sor may support periodically saving an architectural state of
the processor with respect to the executing program (or pro-
gram thread). As noted above, the process of saving this state
may be referred to as taking a checkpoint. As but one
example, a checkpoint might be taken by a processor that
predicts an instruction stream to take one instruction path
upon encountering a branch instruction (i.e., as opposed to
taking another instruction path). Upon determining that the
branch has been mispredicted, execution could be rolled back
to the checkpoint by restoring the saved architectural state
associated with the checkpoint.

A processor may not be able to perform speculative execu-
tion in all instances. In one instance, a processor may be
configured to support only N checkpoints. Ifthe processor has
taken N checkpoints and an executing thread includes an
instruction would cause an additional checkpoint to be taken,
the processor may not be able to continue executing in a
speculative phase. As one example, a processor may include
a store buffer that is configured to buffer data of store instruc-
tions until they can be committed. If that store buffer is full
and the processor executes an additional store instruction, a
processor may not be able to continue executing in the specu-
lative phase. As yet another example, a processor may include
one or more deferred queues configured to store deferred
instructions. If the processor is unable to store additional

20

25

40

45

55

6

deferred instructions because a deferred queue is full, a pro-
cessor may not be able to continue executing in the specula-
tive phase.

When speculative execution cannot be performed or is not
supported, scouting is another alternative. As noted above, a
processor may implement scouting in order to minimize the
penalty incurred by multiple cache misses. Consider a situa-
tion in which a first memory load instruction of a thread
misses in the cache. The data for the miss comes back after a
relatively long delay. Upon resuming execution, a second
instruction also causes a cache miss. By scouting, the proces-
sor can execute a scouting thread that causes the servicing of
the cache miss of the second instruction to have already
occurred at the time the cache miss of the first instruction is
being serviced, allowing the processor to service multiple
cache misses with a shorter delay than servicing each miss in
sequence (i.e., taking the full cache miss penalty for each
miss). Execution in a scouting phase thus involves the pro-
cessor attempting to circumvent or reduce future stalls (e.g.,
those caused by future memory load instructions).

As an example, consider the following instruction
sequence:

1201 LOAD [Address1], Regl

1202 ADD Regl, Reg2, Reg3

1203 LOAD [Address2], Reg2

1204 ADD Reg5, Reg6, Reg7
The first instruction (1201) is an instruction to load a value
from memory into a register Regl. The next instruction in
program order, 1202, uses Reg1 as an operand and cannot be
properly completed until a value for Reg1 becomes available.
If 1201 misses the cache, a delay might ensue while data is
accessed. After this delay, and when Reg1 becomes available,
1202 can be executed. But the next instruction 1203 may also
miss the cache, immediately causing another lengthy stall.

In a processor supporting a scouting phase, upon the pro-
cessor detecting that 1201 has a caused a cache miss, the
execution of 1203 (and other subsequent instructions) may be
performed to cause data to be prefetched from memory into
the cache. Accordingly, instead of simply stalling until 1201°s
results are available, the processor can proceed to determine
if the memory value for Address2 (used by 1203) is present in
the cache. If the value is not present, the processor can cause
the memory subsystem to begin fetching the Address2 value
from memory at the same time that Address1 value is also
being fetched. The delays caused by 1201 and 1203 will thus
overlap instead of being sequential, which can lower the
overall total delay experienced during program execution.

As noted above, instructions executed in a scouting phase
are not committed, and thus do not update architectural state.
As a result, those instructions must be re-fetched and re-
executed. The process of re-fetching and re-executing
instructions, however, can take a significant amount of time
given that pipelines in modern processors have grown signifi-
cantly to support higher operating frequencies. As used
herein, the term “execution pipeline” refers broadly to cir-
cuitry within a processor that is configured to perform the
execution of instructions, including fetching, decoding, issu-
ing, etc., in addition to circuitry that actually calculates an
instruction result (e.g., an execution unit). Accordingly,
restarting an “execution pipeline” refers to the process flush-
ing previous contents from the pipeline, fetching new instruc-
tions for execution, and initiating execution of those instruc-
tions.

The present disclosure describes various embodiments of a
processor that implements various techniques to reduce the
latency of restarting an execution pipeline. In some embodi-
ments, the processor may support speculative execution and/

US 9,086,889 B2

7

or scouting. FIGS. 1 and 2 present an overview of an exem-
plary multithreaded processor. FIGS. 3-5 present
embodiments of a processor core that includes structures
configured reduce the latency of performing an execution
pipeline restart. FIGS. 6-8 present embodiments of methods
that may be performed by such a processor. FIG. 9 presents an
overview of a computer system in which such a processor
may be used.

General Overview of a Multithreaded Processor

Turning now to FIG. 1, a block diagram illustrating one
embodiment of a processor 10 is shown. In certain embodi-
ments, processor 10 may be multithreaded. In the illustrated
embodiment, processor 10 includes a number of processor
cores 100g-r, which are also designated “core 0” though
“core n.” As used herein, the term processor may refer to an
apparatus having a single processor core or an apparatus that
includes two or more processor cores. Various embodiments
of processor 10 may include varying numbers of cores 100,
such as 8, 16, or any other suitable number. Each of cores 100
is coupled to a corresponding [.2 cache 105a-7, which in turn
couple to L3 cache 120 via a crossbar 110. Cores 100a-7 and
L2 caches 105a-» may be generically referred to, either col-
lectively or individually, as core(s) 100 and [.2 cache(s) 105,
respectively.

Via crossbar 110 and L3 cache 120, cores 100 may be
coupled to a variety of devices that may be located externally
to processor 10. In the illustrated embodiment, one or more
memory interface(s) 130 may be configured to couple to one
or more banks of system memory (not shown). One or more
coherent processor interface(s) 140 may be configured to
couple processor 10 to other processors (e.g., in a multipro-
cessor environment employing multiple units of processor
10). Additionally, system interconnect 125 couples cores 100
to one or more peripheral interface(s) 150 and network inter-
face(s) 160. As described in greater detail below, these inter-
faces may be configured to couple processor 10 to various
peripheral devices and networks.

Cores 100 may be configured to execute instructions and to
process data according to a particular instruction set architec-
ture (ISA). In one embodiment, cores 100 may be configured
to implement a version of the SPARC® ISA, such as
SPARC® V9, UltraSPARC Architecture 2005, UltraSPARC
Architecture 2007, or UltraSPARC Architecture 2009, for
example. However, in other embodiments it is contemplated
that any desired ISA may be employed, such as x86 (32-bitor
64-bit versions), PowerPC® or MIPS®, for example.

In the illustrated embodiment, each of cores 100 may be
configured to operate independently of the others, such that
all cores 100 may execute in parallel (i.e., concurrently).
Additionally, as described below in conjunction with the
descriptions of FIG. 2, in some embodiments, each of cores
100 may be configured to execute multiple threads concur-
rently, where a given thread may include a set of instructions
that may execute independently of instructions from another
thread. (For example, an individual software process, such as
anapplication, may consist of one or more threads that may be
scheduled for execution by an operating system.) Such a core
100 may also be referred to as a multithreaded (MT) core. In
one embodiment, each of cores 100 may be configured to
concurrently execute instructions from a variable number of
threads, up to eight concurrently-executing threads. In a
16-core implementation, processor 10 could thus concur-
rently execute up to 128 threads. However, in other embodi-
ments it is contemplated that other numbers of cores 100 may
be provided, and that cores 100 may concurrently process
different numbers of threads.

10

15

20

25

30

35

40

45

50

55

60

65

8

Additionally, as described in greater detail below, in some
embodiments, each of cores 100 may be configured to
execute certain instructions out of program order, which may
also be referred to herein as out-of-order execution, or simply
000. As an example of out-of-order execution, for a particu-
lar thread, there may be instructions that are subsequent in
program order to a given instruction yet do not depend on the
given instruction. If execution of the given instruction is
delayed for some reason (e.g., owing to a cache miss), the
later instructions may execute before the given instruction
completes, which may improve overall performance of the
executing thread.

As shown in FIG. 1, in one embodiment, each core 100 may
have a dedicated corresponding [.2 cache 105. In one embodi-
ment, [.2 cache 105 may be configured as a set-associative,
writeback cache that is fully inclusive of first-level cache state
(e.g., instruction and data caches within core 100). To main-
tain coherence with first-level caches, embodiments of 1.2
cache 105 may implement a reverse directory that maintains
a virtual copy of the first-level cache tags. .2 cache 105 may
implement a coherence protocol (e.g., the MESI protocol) to
maintain coherence with other caches within processor 10. In
one embodiment, [.2 cache 105 may enforce a Total Store
Ordering (TSO) model of execution in which all store instruc-
tions from the same thread must complete in program order.

In various embodiments, [.2 cache 105 may include a vari-
ety of structures configured to support cache functionality
and performance. For example, 1.2 cache 105 may include a
miss buffer configured to store requests that miss the [.2, a fill
buffer configured to temporarily store data returning from .3
cache 120, a writeback buffer configured to temporarily store
dirty evicted data and snoop copyback data, and/or a snoop
buffer configured to store snoop requests received from L3
cache 120. In one embodiment, [.2 cache 105 may implement
a history-based prefetcher that may attempt to analyze [.2
miss behavior and correspondingly generate prefetch
requests to .3 cache 120.

Crossbar 110 may be configured to manage data flow
between L2 caches 105 and the shared L3 cache 120. In one
embodiment, crossbar 110 may include logic (such as multi-
plexers or a switch fabric, for example) that allows any 1.2
cache 105 to access any bank of L3 cache 120, and that
conversely allows datato be returned from any 1.3 bank to any
L2 cache 105. That is, crossbar 110 may be configured as an
M-to-N crossbar that allows for generalized point-to-point
communication. However, in other embodiments, other inter-
connection schemes may be employed between 1.2 caches
105 and L3 cache 120. For example, a mesh, ring, or other
suitable topology may be utilized.

Crossbar 110 may be configured to concurrently process
data requests from .2 caches 105 to L.3 cache 120 as well as
data responses from L3 cache 120 to .2 caches 105. In some
embodiments, crossbar 110 may include logic to queue data
requests and/or responses, such that requests and responses
may not block other activity while waiting for service. Addi-
tionally, in one embodiment crossbar 110 may be configured
to arbitrate conflicts that may occur when multiple 1.2 caches
105 attempt to access a single bank of 1.3 cache 120, or vice
versa.

L3 cache 120 may be configured to cache instructions and
data for use by cores 100. In the illustrated embodiment, [.3
cache 120 may be organized into eight separately addressable
banks that may each be independently accessed, such that in
the absence of conflicts, each bank may concurrently return
datato arespective .2 cache 105. In some embodiments, each
individual bank may be implemented using set-associative or
direct-mapped techniques. For example, in one embodiment,

US 9,086,889 B2

9

L3 cache 120 may be an 8 megabyte (MB) cache, where each
1 MB bank is 16-way set associative with a 64-byte line size.
L3 cache 120 may be implemented in some embodiments as
a writeback cache in which written (dirty) data may not be
written to system memory until a corresponding cache line is
evicted. However, it is contemplated that in other embodi-
ments, [.3 cache 120 may be configured in any suitable fash-
ion. For example, 1.3 cache 120 may be implemented with
more or fewer banks, or in a scheme that does not employ
independently-accessible banks; it may employ other bank
sizes or cache geometries (e.g., different line sizes or degrees
of set associativity); it may employ write-through instead of
writeback behavior; and it may or may not allocate on a write
miss. Other variations of L3 cache 120 configuration are
possible and contemplated.

In some embodiments, [.3 cache 120 may implement
queues for requests arriving from and results to be sent to
crossbar 110. Additionally, in some embodiments .3 cache
120 may implement a fill buffer configured to store fill data
arriving from memory interface 130, a writeback bufter con-
figured to store dirty evicted data to be written to memory,
and/or a miss buffer configured to store L3 cache accesses
that cannot be processed as simple cache hits (e.g., L3 cache
misses, cache accesses matching older misses, accesses such
as atomic operations that may require multiple cache
accesses, etc.). L3 cache 120 may variously be implemented
as single-ported or multiported (i.e., capable of processing
multiple concurrent read and/or write accesses). In either
case, L3 cache 120 may implement arbitration logic to pri-
oritize cache access among various cache read and write
requestors.

Not all external accesses from cores 100 necessarily pro-
ceed through L3 cache 120. In the illustrated embodiment,
non-cacheable unit (NCU) 122 may be configured to process
requests from cores 100 for non-cacheable data, such as data
from I/O devices as described below with respect to periph-
eral interface(s) 150 and network interface(s) 160.

Memory interface 130 may be configured to manage the
transfer of data between L3 cache 120 and system memory,
for example in response to cache fill requests and data evic-
tions. In some embodiments, multiple instances of memory
interface 130 may be implemented, with each instance con-
figured to control a respective bank of system memory.
Memory interface 130 may be configured to interface to any
suitable type of system memory, such as Fully Buftered Dual
Inline Memory Module (FB-DIMM), Double Data Rate or
Double Data Rate 2, 3, or 4 Synchronous Dynamic Random
Access Memory (DDR/DDR2/DDR3/DDR4 SDRAM), or
Rambus® DRAM (RDRAM®), for example. In some
embodiments, memory interface 130 may be configured to
support interfacing to multiple different types of system
memory.

In the illustrated embodiment, processor 10 may also be
configured to receive data from sources other than system
memory. System interconnect 125 may be configured to pro-
vide a central interface for such sources to exchange data with
cores 100, L2 caches 105, and/or L3 cache 120. In some
embodiments, system interconnect 125 may be configured to
coordinate Direct Memory Access (DMA) transfers of data to
and from system memory. For example, via memory interface
130, system interconnect 125 may coordinate DMA transfers
between system memory and a network device attached via
network interface 160, or between system memory and a
peripheral device attached via peripheral interface 150.

Processor 10 may be configured for use in a multiprocessor
environment with other instances of processor 10 or other
compatible processors. In the illustrated embodiment, coher-

10

15

20

25

30

35

40

45

50

55

60

65

10

ent processor interface(s) 140 may be configured to imple-
ment high-bandwidth, direct chip-to-chip communication
between different processors in a manner that preserves
memory coherence among the various processors (e.g.,
according to a coherence protocol that governs memory trans-
actions).

Peripheral interface 150 may be configured to coordinate
data transfer between processor 10 and one or more periph-
eral devices. Such peripheral devices may include, for
example and without limitation, storage devices (e.g., mag-
netic or optical media-based storage devices including hard
drives, tape drives, CD drives, DVD drives, etc.), display
devices (e.g., graphics subsystems), multimedia devices (e.g.,
audio processing subsystems), or any other suitable type of
peripheral device. In one embodiment, peripheral interface
150 may implement one or more instances of a standard
peripheral interface. For example, one embodiment of periph-
eral interface 150 may implement the Peripheral Component
Interface Express (PCI Express™ or PCle) standard accord-
ing to generation 1.x, 2.0, 3.0, or another suitable variant of
that standard, with any suitable number of I/O lanes. How-
ever, it is contemplated that any suitable interface standard or
combination of standards may be employed. For example, in
some embodiments peripheral interface 150 may be config-
ured to implement a version of Universal Serial Bus (USB)
protocol or IEEE 1394 (Firewire®) protocol in addition to or
instead of PCI Express™.

Network interface 160 may be configured to coordinate
data transfer between processor 10 and one or more network
devices (e.g., networked computer systems or peripherals)
coupled to processor 10 via a network. In one embodiment,
network interface 160 may be configured to perform the data
processing necessary to implement an Ethernet (IEEE 802.3)
networking standard such as Gigabit Ethernet or 10-Gigabit
Ethernet, for example. However, it is contemplated that any
suitable networking standard may be implemented, including
forthcoming standards such as 40-Gigabit Ethernet and 100-
Gigabit Ethernet. In some embodiments, network interface
160 may be configured to implement other types of network-
ing protocols, such as Fibre Channel, Fibre Channel over
Ethernet (FCoE), Data Center Ethernet, Infiniband, and/or
other suitable networking protocols. In some embodiments,
network interface 160 may be configured to implement mul-
tiple discrete network interface ports.

Overview of Dynamic Multithreading Processor Core

As mentioned above, in one embodiment each of cores 100
may be configured for multithreaded, out-of-order execution.
More specifically, in one embodiment, each of cores 100 may
be configured to perform dynamic multithreading. Generally
speaking, under dynamic multithreading, the execution
resources of cores 100 may be configured to efficiently pro-
cess varying types of computational workloads that exhibit
different performance characteristics and resource require-
ments. Such workloads may vary across a continuum that
emphasizes different combinations of individual-thread and
multiple-thread performance.

At one end of the continuum, a computational workload
may include a number of independent tasks, where complet-
ing the aggregate set of tasks within certain performance
criteria (e.g., an overall number of tasks per second) is a more
significant factor in system performance than the rate at
which any particular task is completed. For example, in cer-
tain types of server or transaction processing environments,
there may be a high volume of individual client or customer
requests (such as web page requests or file system accesses).
In this context, individual requests may not be particularly
sensitive to processor performance. For example, requests

US 9,086,889 B2

11

may be 1/O-bound rather than processor-bound—completion
of an individual request may require I/O accesses (e.g., to
relatively slow memory, network, or storage devices) that
dominate the overall time required to complete the request,
relative to the processor effort involved. Thus, a processor
that is capable of concurrently processing many such tasks
(e.g., as independently executing threads) may exhibit better
performance on such a workload than a processor that empha-
sizes the performance of only one or a small number of
concurrent tasks.

At the other end of the continuum, a computational work-
load may include individual tasks whose performance is
highly processor-sensitive. For example, a task that involves
significant mathematical analysis and/or transformation (e.g.,
cryptography, graphics processing, scientific computing)
may be more processor-bound than I/O-bound. Such tasks
may benefit from processors that emphasize single-task per-
formance, for example through speculative execution and
exploitation of instruction-level parallelism.

Dynamic multithreading represents an attempt to allocate
processor resources in a manner that flexibly adapts to work-
loads that vary along the continuum described above. In one
embodiment, cores 100 may be configured to implement
fine-grained multithreading, in which each core may select
instructions to execute from among a pool of instructions
corresponding to multiple threads, such that instructions from
different threads may be scheduled to execute adjacently. For
example, in a pipelined embodiment of core 100 employing
fine-grained multithreading, instructions from different
threads may occupy adjacent pipeline stages, such that
instructions from several threads may be in various stages of
execution during a given core processing cycle. Through the
use of fine-grained multithreading, cores 100 may be config-
ured to efficiently process workloads that depend more on
concurrent thread processing than individual thread perfor-
mance.

In one embodiment, cores 100 may also be configured to
implement out-of-order processing, speculative execution,
register renaming and/or other features that improve the per-
formance of processor-dependent workloads. Moreover,
cores 100 may be configured to dynamically allocate a variety
of hardware resources among the threads that are actively
executing at a given time, such that if fewer threads are
executing, each individual thread may be able to take advan-
tage of a greater share of the available hardware resources.
This may result in increased individual thread performance
when fewer threads are executing, while retaining the flex-
ibility to support workloads that exhibit a greater number of
threads that are less processor-dependent in their perfor-
mance. In various embodiments, the resources of a given core
100 that may be dynamically allocated among a varying
number of threads may include branch resources (e.g., branch
predictor structures), load/store resources (e.g., load/store
buffers and queues), instruction completion resources (e.g.,
reorder buffer structures and commit logic), instruction issue
resources (e.g., instruction selection and scheduling struc-
tures), register rename resources (e.g., register mapping
tables), and/or memory management unit resources (e.g.,
translation lookaside buffers, page walk resources).

One embodiment of core 100 that is configured to perform
dynamic multithreading is illustrated in FIG. 2. In the illus-
trated embodiment, core 100 includes an instruction fetch
unit (IFU) 200 that includes an instruction cache 205. IFU
200 is coupled to a memory management unit (MMU) 270,
L2 interface 265, and trap logic unit (TLU) 275. IFU 200 is
additionally coupled to an instruction processing pipeline that
begins with a select unit 210 and proceeds in turn through a

10

15

20

25

30

35

40

45

50

55

60

65

12

decode unit 215, a rename unit 220, a pick unit 225, and an
issue unit 230. Issue unit 230 is coupled to issue instructions
to any of a number of instruction execution resources: an
execution unit 0 (EXU0) 235, an execution unit 1 (EXU1)
240, a load store unit (LSU) 245 that includes a data cache
250, and/or a floating-point/graphics unit (FGU) 255. These
instruction execution resources are coupled to a working reg-
ister file 260. Additionally, L.SU 245 is coupled to L2 inter-
face 265 and MMU 270.

In the following discussion, exemplary embodiments of
each of the structures of the illustrated embodiment of core
100 are described. However, it is noted that the illustrated
partitioning of resources is merely one example of how core
100 may be implemented. Alternative configurations and
variations are possible and contemplated.

Instruction fetch unit 200 may be configured to provide
instructions to the rest of core 100 for execution. In one
embodiment, IFU 200 may be configured to select a thread to
be fetched, fetch instructions from instruction cache 205 for
the selected thread and buffer them for downstream process-
ing, request data from [.2 cache 105 in response to instruction
cache misses, and predict the direction and target of control
transfer instructions (e.g., branches). In some embodiments,
IFU 200 may include a number of data structures in addition
to instruction cache 205, such as an instruction translation
lookaside buffer (ITLB), instruction buffers, and/or struc-
tures configured to store state that is relevant to thread selec-
tion and processing.

In one embodiment, during each execution cycle of core
100, IFU 200 may be configured to select one thread that will
enter the IFU processing pipeline. Thread selection may take
into account a variety of factors and conditions, some thread-
specific and others IFU-specific. For example, certain
instruction cache activities (e.g., cache fill), ITLB activities,
or diagnostic activities may inhibit thread selection if these
activities are occurring during a given execution cycle. Addi-
tionally, individual threads may be in specific states of readi-
ness that affect their eligibility for selection. For example, a
thread for which there is an outstanding instruction cache
miss may not be eligible for selection until the miss is
resolved. In some embodiments, those threads that are eli-
gible to participate in thread selection may be divided into
groups by priority, for example depending on the state of the
thread or of the ability of the IFU pipeline to process the
thread. In such embodiments, multiple levels of arbitration
may be employed to perform thread selection: selection
occurs first by group priority, and then within the selected
group according to a suitable arbitration algorithm (e.g., a
least-recently-fetched algorithm). However, it is noted that
any suitable scheme for thread selection may be employed,
including arbitration schemes that are more complex or sim-
pler than those mentioned here.

Once a thread has been selected for fetching by IFU 200,
instructions may actually be fetched for the selected thread.
To perform the fetch, in one embodiment, IFU 200 may be
configured to generate a fetch address to be supplied to
instruction cache 205. In various embodiments, the fetch
address may be generated as a function of a program counter
associated with the selected thread, a predicted branch target
address, or an address supplied in some other manner (e.g.,
through a test or diagnostic mode). The generated fetch
address may then be applied to instruction cache 205 to deter-
mine whether there is a cache hit.

In some embodiments, accessing instruction cache 205
may include performing fetch address translation (e.g., in the
case of a physically indexed and/or tagged cache), accessing
a cache tag array, and comparing a retrieved cache tag to a

US 9,086,889 B2

13

requested tag to determine cache hit status. If there is a cache
hit, IFU 200 may store the retrieved instructions within buff-
ers for use by later stages of the instruction pipeline. If there
is a cache miss, IFU 200 may coordinate retrieval of the
missing cache data from [.2 cache 105. In some embodi-
ments, [FU 200 may also be configured to prefetch instruc-
tions into instruction cache 205 before the instructions are
actually required to be fetched. For example, in the case of a
cache miss, IFU 200 may be configured to retrieve the miss-
ing data for the requested fetch address as well as addresses
that sequentially follow the requested fetch address, on the
assumption that the following addresses are likely to be
fetched in the near future.

In many ISAs, instruction execution proceeds sequentially
according to instruction addresses (e.g., as reflected by one or
more program counters). However, control transfer instruc-
tions (CTIs) such as branches, call/return instructions, or
other types of instructions may cause the transfer of execution
from a current fetch address to a nonsequential address. As
mentioned above, IFU 200 may be configured to predict the
direction and target of CTIs (or, in some embodiments, a
subset of the CTIs that are defined for an ISA) in order to
reduce the delays incurred by waiting until the effect of a CTI
is known with certainty. In one embodiment, IFU 200 may be
configured to implement a perceptron-based dynamic branch
predictor, although any suitable type of branch predictor may
be employed.

To implement branch prediction, IFU 200 may implement
a variety of control and data structures in various embodi-
ments, such as history registers that track prior branch history,
weight tables that reflect relative weights or strengths of pre-
dictions, and/or target data structures that store fetch
addresses that are predicted to be targets of a CTI. Also, in
some embodiments, IFU 200 may further be configured to
partially decode (or predecode) fetched instructions in order
to facilitate branch prediction. A predicted fetch address for a
given thread may be used as the fetch address when the given
thread is selected for fetching by IFU 200. The outcome of the
prediction may be validated when the CTI is actually
executed (e.g., if the CT1 is a conditional instruction, or if the
CTI itself is in the path of another predicted CTI). If the
prediction was incorrect, instructions along the predicted
path that were fetched and issued may be cancelled.

Through the operations discussed above, [FU 200 may be
configured to fetch and maintain a buffered pool of instruc-
tions from one or multiple threads, to be fed into the remain-
der of the instruction pipeline for execution. Generally speak-
ing, select unit 210 may be configured to select and schedule
threads for execution. In one embodiment, during any given
execution cycle of core 100, select unit 210 may be config-
ured to select up to one ready thread out of the maximum
number of threads concurrently supported by core 100 (e.g.,
8 threads), and may select up to two instructions from the
selected thread for decoding by decode unit 215, although in
other embodiments, a differing number of threads and
instructions may be selected. In various embodiments, difter-
ent conditions may affect whether a thread is ready for selec-
tion by select unit 210, such as branch mispredictions,
unavailable instructions, or other conditions. To ensure fair-
ness in thread selection, some embodiments of select unit 210
may employ arbitration among ready threads (e.g. a least-
recently-used algorithm).

The particular instructions that are selected for decode by
select unit 210 may be subject to the decode restrictions of
decode unit 215; thus, in any given cycle, fewer than the
maximum possible number of instructions may be selected.
Additionally, in some embodiments, select unit 210 may be

25

40

45

50

55

14

configured to allocate certain execution resources of core 100
to the selected instructions, so that the allocated resources
will not be used for the benefit of another instruction until
they are released. For example, select unit 210 may allocate
resource tags for entries of areorder butfer, load/store buffers,
or other downstream resources that may be utilized during
instruction execution.

Generally, decode unit 215 may be configured to prepare
the instructions selected by select unit 210 for further pro-
cessing. Decode unit 215 may be configured to identity the
particular nature of an instruction (e.g., as specified by its
opcode) and to determine the source and sink (i.e., destina-
tion) registers encoded in an instruction, if any. In some
embodiments, decode unit 215 may be configured to detect
certain dependencies among instructions, to remap architec-
tural registers to a flat register space, and/or to convert certain
complex instructions to two or more simpler instructions for
execution. Additionally, in some embodiments, decode unit
215 may be configured to assign instructions to slots for
subsequent scheduling. In one embodiment, two slots 0-1
may be defined, where slot 0 includes instructions executable
in load/store unit 245 or execution units 235-240, and where
slot 1 includes instructions executable in execution units 235-
240, floating-point/graphics unit 255, and any branch instruc-
tions. However, in other embodiments, other numbers of slots
and types of slot assignments may be employed, or slots may
be omitted entirely.

Register renaming may facilitate the elimination of certain
dependencies between instructions (e.g., write-after-read or
“false” dependencies), which may in turn prevent unneces-
sary serialization of instruction execution. In one embodi-
ment, rename unit 220 may be configured to rename the
logical (i.e., architected) destination registers specified by
instructions by mapping them to a physical register space,
resolving false dependencies in the process. In some embodi-
ments, rename unit 220 may maintain mapping tables that
reflect the relationship between logical registers and the
physical registers to which they are mapped.

Once decoded and renamed, instructions may be ready to
be scheduled for execution. In the illustrated embodiment,
pick unit 225 may be configured to pick instructions that are
ready for execution and send the picked instructions to issue
unit 230. In one embodiment, pick unit 225 may be config-
ured to maintain a pick queue that stores a number of decoded
and renamed instructions as well as information about the
relative age and status of the stored instructions. During each
execution cycle, this embodiment of pick unit 225 may pick
up to one instruction per slot. For example, taking instruction
dependency and age information into account, for a given
slot, pick unit 225 may be configured to pick the oldest
instruction for the given slot that is ready to execute.

In some embodiments, pick unit 225 may be configured to
support load/store speculation by retaining speculative load/
store instructions (and, in some instances, their dependent
instructions) after they have been picked. This may facilitate
replaying of instructions in the event of load/store misspecu-
lation. Additionally, in some embodiments, pick unit 225 may
be configured to deliberately insert “holes” into the pipeline
through the use of'stalls, e.g., in order to manage downstream
pipeline hazards such as synchronization of certain load/store
or long-latency FGU instructions.

Issue unit 230 may be configured to provide instruction
sources and data to the various execution units for picked
instructions. In one embodiment, issue unit 230 may be con-
figured to read source operands from the appropriate source,
which may vary depending upon the state of the pipeline. For
example, if a source operand depends on a prior instruction

US 9,086,889 B2

15

that is still in the execution pipeline, the operand may be
bypassed directly from the appropriate execution unit result
bus. Results may also be sourced from register files represent-
ing architectural (i.e., user-visible) as well as non-architec-
tural state. In the illustrated embodiment, core 100 includes a
working register file 260 that may be configured to store
instruction results (e.g., integer results, floating-point results,
and/or condition code results) that have not yet been commit-
ted to architectural state, and which may serve as the source
for certain operands. The various execution units may also
maintain architectural integer, floating-point, and condition
code state from which operands may be sourced.

Instructions issued from issue unit 230 may proceed to one
or more of the illustrated execution units for execution. In one
embodiment, each of EXU0 235 and EXU1 240 may be
similarly or identically configured to execute certain integer-
type instructions defined in the implemented ISA, such as
arithmetic, logical, and shift instructions. In the illustrated
embodiment, EXU0 235 may be configured to execute inte-
ger instructions issued from slot 0, and may also perform
address calculation and for load/store instructions executed
by LSU 245. EXU1 240 may be configured to execute integer
instructions issued from slot 1, as well as branch instructions.
In one embodiment, FGU instructions and multicycle integer
instructions may be processed as slot 1 instructions that pass
through the EXU1 240 pipeline, although some of these
instructions may actually execute in other functional units.

In some embodiments, architectural and non-architectural
register files may be physically implemented within or near
execution units 235-240. It is contemplated that in some
embodiments, core 100 may include more or fewer than two
integer execution units, and the execution units may or may
not be symmetric in functionality. Also, in some embodi-
ments execution units 235-240 may not be bound to specific
issue slots, or may be differently bound than just described.

Load store unit 245 may be configured to process data
memory references, such as integer and floating-point load
and store instructions and other types of memory reference
instructions. LSU 245 may include a data cache 250 as well as
logic configured to detect data cache misses and to respon-
sively request data from L2 cache 105. In one embodiment,
data cache 250 may be configured as a set-associative, write-
through cache in which all stores are written to L.2 cache 105
regardless of whether they hit in data cache 250. As noted
above, the actual computation of addresses for load/store
instructions may take place within one of the integer execu-
tion units, though in other embodiments, LSU 245 may
implement dedicated address generation logic. In some
embodiments, L.SU 245 may implement an adaptive, history-
dependent hardware prefetcher configured to predict and
prefetch data that is likely to be used in the future, in order to
increase the likelihood that such data will be resident in data
cache 250 when it is needed.

In various embodiments, L.SU 245 may implement a vari-
ety of structures configured to facilitate memory operations.
For example, LSU 245 may implement a data TLB to cache
virtual data address translations, as well as load and store
buffers configured to store issued but not-yet-committed load
and store instructions for the purposes of coherency snooping
and dependency checking [.SU 245 may include a miss buffer
configured to store outstanding loads and stores that cannot
yet complete, for example due to cache misses. In one
embodiment, LSU 245 may implement a store queue config-
ured to store address and data information for stores that have
committed, in order to facilitate load dependency checking
LSU 245 may also include hardware configured to support

10

15

20

25

30

35

40

45

50

55

60

65

16

atomic load-store instructions, memory-related exception
detection, and read and write access to special-purpose reg-
isters (e.g., control registers).

Floating point/graphics unit 255 may be configured to
execute and provide results for certain floating-point and
graphics-oriented instructions defined in the implemented
ISA. For example, in one embodiment FGU 255 may imple-
ment single- and double-precision floating-point arithmetic
instructions compliant with the IEEE 754-1985 floating-
point standard, such as add, subtract, multiply, divide, and
certain transcendental functions. Also, in one embodiment
FGU 255 may implement partitioned-arithmetic and graph-
ics-oriented instructions defined by a version of the SPARC®
Visual Instruction Set (VISTM) architecture, such as VISTM
2.0 or VISTM 3.0. In some embodiments, FGU 255 may
implement fused and unfused floating-point multiply-add
instructions. Additionally, in one embodiment FGU 255 may
implement certain integer instructions such as integer multi-
ply, divide, and population count instructions. Depending on
the implementation of FGU 255, some instructions (e.g.,
some transcendental or extended-precision instructions) or
instruction operand or result scenarios (e.g., certain denormal
operands or expected results) may be trapped and handled or
emulated by software.

In one embodiment, FGU 255 may implement separate
execution pipelines for floating-point add/multiply, divide/
square root, and graphics operations, while in other embodi-
ments the instructions implemented by FGU 255 may be
differently partitioned. In various embodiments, instructions
implemented by FGU 255 may be fully pipelined (i.e., FGU
255 may be capable of starting one new instruction per execu-
tion cycle), partially pipelined, or may block issue until com-
plete, depending on the instruction type. For example, in one
embodiment floating-point add and multiply operations may
be fully pipelined, while floating-point divide operations may
block other divide/square root operations until completed.

Embodiments of FGU 255 may also be configured to
implement hardware cryptographic support. For example,
FGU 255 may include logic configured to support encryption/
decryption algorithms such as Advanced Encryption Stan-
dard (AES), Data Encryption Standard/Triple Data Encryp-
tion Standard (DES/3DES), the Kasumi block cipher
algorithm, and/or the Camellia block cipher algorithm. FGU
255 may also include logic to implement hash or checksum
algorithms such as Secure Hash Algorithm (SHA-1, SHA-
256,SHA-384, SHA-512), or Message Digest 5 (MDS5). FGU
255 may also be configured to implement modular arithmetic
such as modular multiplication, reduction and exponentia-
tion, as well as various types of Galois field operations. In one
embodiment, FGU 255 may be configured to utilize the float-
ing-point multiplier array for modular multiplication. In vari-
ous embodiments, FGU 255 may implement several of the
aforementioned algorithms as well as other algorithms not
specifically described.

The various cryptographic and modular arithmetic opera-
tions provided by FGU 255 may be invoked in different ways
for different embodiments. In one embodiment, these fea-
tures may be implemented via a discrete coprocessor that may
be indirectly programmed by software, for example by using
a control word queue defined through the use of special reg-
isters or memory-mapped registers. In another embodiment,
the ISA may be augmented with specific instructions that may
allow software to directly perform these operations.

As previously described, instruction and data memory
accesses may involve translating virtual addresses to physical
addresses. In one embodiment, such translation may occur on
apage level of granularity, where a certain number of address

US 9,086,889 B2

17

bits comprise an offset into a given page of addresses, and the
remaining address bits comprise a page number. For example,
in an embodiment employing 4 MB pages, a 64-bit virtual
address and a 40-bit physical address, 22 address bits (corre-
sponding to 4 MB of address space, and typically the least
significant address bits) may constitute the page offset. The
remaining 42 bits of the virtual address may correspond to the
virtual page number of that address, and the remaining 18 bits
of the physical address may correspond to the physical page
number of that address. In such an embodiment, virtual to
physical address translation may occur by mapping a virtual
page number to a particular physical page number, leaving the
page offset unmodified.

Such translation mappings may be stored in an ITLB or a
DTLB for rapid translation of virtual addresses during lookup
of instruction cache 205 or data cache 250. In the event no
translation for a given virtual page number is found in the
appropriate TLB, memory management unit 270 may be con-
figured to provide a translation. In one embodiment, MMU
270 may be configured to manage one or more translation
tables stored in system memory and to traverse such tables
(which in some embodiments may be hierarchically orga-
nized) in response to a request for an address translation, such
as from an ITLB or DTLB miss. (Such a traversal may also be
referred to as a page table walk or a hardware table walk.) In
some embodiments, if MMU 270 is unable to derive a valid
address translation, for example if one of the memory pages
including a necessary page table is not resident in physical
memory (i.e., a page miss), MMU 270 may be configured to
generate a trap to allow a memory management software
routine to handle the translation. It is contemplated that in
various embodiments, any desirable page size may be
employed. Further, in some embodiments multiple page sizes
may be concurrently supported.

As noted above, several functional units in the illustrated
embodiment of core 100 may be configured to generate oft-
core memory requests. For example, IFU 200 and LSU 245
each may generate access requests to L2 cache 105 in
response to their respective cache misses. Additionally,
MMU 270 may be configured to generate memory requests,
for example while executing a page table walk. In the illus-
trated embodiment, [.2 interface 265 may be configured to
provide a centralized interface to the .2 cache 105 associated
with a particular core 100, on behalf of the various functional
units that may generate [.2 accesses. In one embodiment, .2
interface 265 may be configured to maintain queues of pend-
ing L2 requests and to arbitrate among pending requests to
determine which request or requests may be conveyed to [.2
cache 105 during a given execution cycle. For example, [.2
interface 265 may implement a least-recently-used or other
algorithm to arbitrate among 1.2 requestors. In one embodi-
ment, [.2 interface 265 may also be configured to receive data
returned from L2 cache 105, and to direct such data to the
appropriate functional unit (e.g., to data cache 250 for a data
cache fill due to miss).

During the course of operation of some embodiments of
core 100, exceptional events may occur. For example, an
instruction from a given thread that is selected for execution
by select unit 210 may not be a valid instruction for the ISA
implemented by core 100 (e.g., the instruction may have an
illegal opcode), a floating-point instruction may produce a
result that requires further processing in software, MMU 270
may not be able to complete a page table walk due to a page
miss, a hardware error (such as uncorrectable data corruption
in a cache or register file) may be detected, or any of numer-
ous other possible architecturally-defined or implementation-
specific exceptional events may occur. In one embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

18

trap logic unit 275 may be configured to manage the handling
of'such events. For example, TL.U 275 may be configured to
receive notification of an exceptional event occurring during
execution of a particular thread, and to cause execution con-
trol of that thread to vector to a supervisor-mode software
handler (i.e., a trap handler) corresponding to the detected
event. Such handlers may include, for example, an illegal
opcode trap handler configured to return an error status indi-
cation to an application associated with the trapping thread
and possibly terminate the application, a floating-point trap
handler configured to fix up an inexact result, etc.

In one embodiment, TLU 275 may be configured to flush
all instructions from the trapping thread from any stage of
processing within core 100, without disrupting the execution
of other, non-trapping threads. In some embodiments, when a
specific instruction from a given thread causes a trap (as
opposed to a trap-causing condition independent of instruc-
tion execution, such as a hardware interrupt request), TLU
275 may implement such traps as precise traps. That is, TLU
275 may ensure that all instructions from the given thread that
occur before the trapping instruction (in program order) com-
plete and update architectural state, while no instructions
from the given thread that occur after the trapping instruction
(in program) order complete or update architectural state.

Additionally, in the absence of exceptions or trap requests,
TLU 275 may be configured to initiate and monitor the com-
mitment of working results to architectural state. For
example, TLU 275 may include a reorder buffer (ROB) that
coordinates transfer of speculative results into architectural
state. TLU 275 may also be configured to coordinate thread
flushing that results from branch misprediction. For instruc-
tions that are not flushed or otherwise cancelled due to
mispredictions or exceptions, instruction processing may end
when instruction results have been committed.

Invarious embodiments, any of the units illustrated in FIG.
2 may be implemented as one or more pipeline stages, to form
an instruction execution pipeline that begins when thread
fetching occurs in IFU 200 and ends with result commitment
by TLU 275. Depending on the manner in which the func-
tionality of the various units of FIG. 2 is partitioned and
implemented, different units may require different numbers
of cycles to complete their portion of instruction processing.
In some instances, certain units (e.g., FGU 255) may require
a variable number of cycles to complete certain types of
operations.

Through the use of dynamic multithreading, in some
instances, it is possible for each stage of the instruction pipe-
line of core 100 to hold an instruction from a different thread
in a different stage of execution, in contrast to conventional
processor implementations that typically require a pipeline
flush when switching between threads or processes. In some
embodiments, flushes and stalls due to resource conflicts or
other scheduling hazards may cause some pipeline stages to
have no instruction during a given cycle. However, in the
fine-grained multithreaded processor implementation
employed by the illustrated embodiment of core 100, such
flushes and stalls may be directed to a single thread in the
pipeline, leaving other threads undisturbed. Additionally,
even if one thread being processed by core 100 stalls for a
significant length of time (for example, due to an [.2 cache
miss), instructions from another thread may be readily
selected for issue, thus increasing overall thread processing
throughput.

As described previously, however, the various resources of
core 100 that support fine-grained multithreaded execution
may also be dynamically reallocated to improve the perfor-
mance of workloads having fewer numbers of threads. Under

US 9,086,889 B2

19

these circumstances, some threads may be allocated a larger
share of execution resources while other threads are allocated
correspondingly fewer resources. Even when fewer threads
are sharing comparatively larger shares of execution
resources, however, core 100 may still exhibit the flexible,
thread-specific flush and stall behavior described above.
Reducing Pipeline Restart Penalty in a Processor

As noted above, instructions previously executed in a
scouting phase are re-fetched and re-executed in order to
update architectural state because those instructions were not
committed when first executed. To reduce the latency of
restarting the pipeline including re-fetching and initiating
execution of those instructions, processor 10 may implement
various techniques described below.

Turning now to FIG. 3, one embodiment of a processor
core 300 (which may be included within processor 10 in some
embodiments) configured to reduce pipeline restart latency
by initiating re-fetching instructions in response to determin-
ing to execute a thread in a scouting phase is shown. As will
be described below, core 300, in one embodiment, may fetch
instructions using a first instruction fetch unit (IFU) while
simultaneously re-fetching instructions using a second IFU.
In another embodiment, core 300 may use the same instruc-
tion fetch unit for fetching and re-fetching instructions in
parallel. By initiating re-fetching instructions in response to
determining to execute a thread in a scouting phase, core 300
may have a smaller restart latency than if it began re-fetch
instructions after ending the scouting phase.

In the illustrated embodiment, core 300 includes an execu-
tion pipeline 310 and a commit unit 320. In various embodi-
ments, execution pipeline 310 is representative of circuitry
that is configured to execute instructions (as noted above, the
term “execute” here is used broadly to refer to performing
various stages needed to initiate, perform, and commit an
instruction). In the illustrated embodiment, execution pipe-
line 310 includes instruction fetch units (IFUs) 312A and
312B that are coupled to respective decode units 314A and
314B that are, in turn, coupled to respective instruction buft-
ers 316 A and 316B. The instructions buffers 316 are coupled
to issue unit 318. In some embodiments, execution pipeline
310 may include additional or less IFUs 312. In various
embodiments, issue unit 318 may be coupled to one or more
additional structures including execution units 235 and 240,
load store unit 245, FPG 255, or other structures such as those
shown within core 100 in FIG. 2. (In some embodiments,
commit unit 320 may also be considered as being part of
execution pipeline 310). In various embodiments, units 312-
320 may operate in a similar manner as units 200-275
described in FIG. 2. In some embodiments, core 300 may
include additional structures to support speculative execu-
tion, such as deferred queues, speculative register files, etc.

Inoneembodiment, IFUs 312 A and 312B are configured to
fetch instructions that are to be executed in pipeline 310. In
some embodiments, core 300 may execute these instructions
in a “normal phase”, a speculative phase, or a scouting phase.
As noted above, instructions executed in scouting phase are
re-executed if they are to be committed. As will be described
below, in some embodiments, one of IFUs 312 may be
selected to re-fetch instructions when core 300 is executing
instructions in a scouting phase.

In one embodiment, decode units 314A and 314B are con-
figured to decode instructions fetched by IFUs 312A and
312B, respectively. In various embodiments, decode units
314 are configured to operate in parallel with one another.
That is, decode unit 314 A is configured to decode instructions
while decode unit 314B is also decoding instructions. In one
embodiment, decode unit 314A and 314B are configured to

25

30

40

45

55

60

20
store the decoded instructions in respective instruction buff-
ers 316 A and 316B. In some embodiments, [FUs 312 may
share a decode unit 314 and/or instruction buffer 316.

In one embodiment, instruction buffers 316A and 316B are
configured to store instructions that have been fetched and
decoded. As will be described below, in some embodiments,
when core 300 is executing instructions in a scouting phase,
one of the buffers 316 is configured to store instructions that
are to be executed in the scouting phase and not committed.
The other buffer 316 is configured to store instructions that
are to be executed and committed once core 300 ends the
scouting phase.

In one embodiment, issue unit 318 is configured to issue
instructions for execution in pipeline 310. As will be
described below, in one embodiment, when core 300 is
executing instructions in a scouting phase, issue unit 318 is
configured to issue instructions of a thread that are to be
executed in the scouting phase and to not issue re-fetched
instructions of the thread until those instructions can be
executed in a non-scouting phase. Once core 300 ends the
scouting phase, issue unit 318, in one embodiment, is config-
ured to issue re-fetched instructions of the thread.

Inone embodiment, commit unit 320 is configured to cause
results of instructions executed in pipeline 310 to be commit-
ted to an architectural state of the processor (i.e., retired). In
various embodiments, commit unit 320 may communicate
with various units in pipeline 310, such as, [FUs 312, issue
unit 318, etc. In one embodiment, commit unit 320 is config-
ured to send a pipeline clear signal to units within pipeline
310, where the pipeline clear signal specifies that the results
of in-flight instructions (i.e., those instructions being
executed within pipeline 310) are to be discarded (i.e.,
flushed). In one embodiment, commit unit 320 may send a
pipeline clear signal to units within pipeline 310 upon deter-
mining that a path of a branch has been mispredicted and that
instructions of the alternate path need to be executed. In some
embodiments, commit unit 320 may send a pipeline clear
signal when core 300 transitions from a scouting phase to a
non-scouting phase. In various embodiments, commit unit
320 may include trap-handling logic configured to implement
various functionality of TLU 275 described above.

In one embodiment, commit unit 320 is configured to
determine whether a thread is to be executed in a “normal”
phase, a speculative phase, or a scouting phase and to cause
core 300 to execute the thread in that phase. For example, in
one embodiment, commit unit 320 is configured to cause a
thread to execute in a speculative phase in response to deter-
mining that a checkpoint should be taken in that executing
thread. Alternatively, in one embodiment, commit unit 320 is
configured to cause a thread to execute in a scouting phase if
that the thread cannot be executed in a speculative phase. As
note above, there are several reasons why a thread might not
be able to be executed speculatively. For example, in some
embodiments, core 300 may support taking up to N check-
points. In one embodiment, if N checkpoints have already
been taken, commit unit 320 is configured to cause a thread to
be executed in a scouting phase in response to determining
that core 300 is attempting to execute an instruction that
would cause an additional checkpoint to be taken—thus, core
300 would exceed the maximum number of supported check-
points. Commit unit 320 may also cause a thread to execute in
a scouting phase based on other conditions. In one embodi-
ment, commit unit 320 is configured to cause a thread to
execute in a scouting phase if core 300 does not have suffi-
cient space to store deferrable instructions of that thread. For
example, in some embodiments, core 300 may include a
deferred queue (e.g., deferred queue 430 described below)

US 9,086,889 B2

21

configured to store N instructions. If an executing thread
includes a deferrable instruction and the deferred queue is
already storing N instructions (i.e., it is full), commit unit 320,
in some embodiments, may determine to execute that thread
in a scouting phase. As another example, in one embodiment,
commit unit 320 may be configured to cause a thread to
execute in a scouting phase if that thread includes a store
instruction that needs space in a store queue (e.g., within LSU
245) and the store queue is currently full. In various embodi-
ments, commit unit 320 is configured to end the scouting
phase once the condition that caused core 300 to enter the
scouting phase has been resolved. For example, in one
embodiment, if core 300 enters a scouting phase in response
to a load instruction causing a cache miss, commit unit 320, in
one embodiment, is configured to cause core 300 to end the
scouting phase upon determining that the requested data for
that instruction has returned.

As noted above, instructions executed in a scouting phase
are re-fetched and re-executed if they are to be committed. In
one embodiment, when core 300 is executing a thread in a
scouting phase, commit unit 320 is configured to instruct the
IFUs 312 to initiate re-fetching one or more instructions
before core 300 ends the scouting phase. In some embodi-
ments, commit unit 320 is configured to instruct the [FUs 312
to initiate re-fetching instructions upon determining a thread
is to be executed in a scouting phase—e.g., commit unit 320
may have detected that one of'the conditions described above
has occurred. In some embodiments, commit unit 320 may
provide information to IFUs 312 that is usable to determine
the instructions that need to be re-fetched. For example, in
one embodiment, commit unit 320 is configured to specify the
instructions to be re-fetched by specifying the thread that is to
be executed in a scouting phase. In other embodiments, com-
mit unit 320 may specify the instructions to be re-fetched by
identifying the memory address (e.g., the program counter) of
the first instruction to be re-fetched. In one embodiment, this
memory address may be stored when a checkpoint was taken.

As noted above, in one embodiment, IFUs 312 are config-
ured to fetch instructions that are to be executed in pipeline
310. In some embodiments, IFUs 312 are configured to per-
form differently depending on whether core 300 is operating
in a scouting phase or not. When core 300 is operating in a
non-scouting phase, one or both IFUs 312 may fetch instruc-
tions for one or more threads. For example, in one embodi-
ment, IFU 312A is configured to fetch instructions for one
thread while IFU 312B is configured to fetch instructions for
another thread. Alternatively, in other embodiments, a single
one of the IFUs 312 (e.g., IFU 312A) is selected to fetch
instructions, while the non-selected IFU 312 (e.g., IFU 312B)
is placed in a standby mode (i.e., it is not used).

In one embodiment, once core 300 begins executing a
thread ina scouting phase, the IFU 312 that is already fetching
instructions for that thread becomes a primary IFU while the
other IFU 312 is selected to function as secondary IFU. In one
embodiment, the IFU 312 selected as the primary IFU is
configured to continue fetching instructions for that thread,
where those instructions are to be executed in the scouting
phase. In one embodiment, the IFU 312 selected as the sec-
ondary IFU is configured to re-fetch one or more instructions
in parallel with the primary IFU, where the re-fetched instruc-
tions areto be subsequently executed in a non-scouting phase.
In various embodiments, each IFU 312 is configured to oper-
ate as primary [FU or a secondary IFU and may periodically
alternate between roles. For example, I[FU 312A may operate
as primary [FU and then subsequently operate as a secondary
TFU.

30

40

45

22

In one embodiment, the secondary IFU may re-fetch
instructions that were executed in the scouting phase—i.e.,
the instructions that were previously fetched and executed but
not committed. In some embodiments in which core 300
supports speculative execution, the secondary IFU is config-
ured to re-fetch instructions executed since the last check-
point that was taken. For example, if an executing thread
caused a first checkpoint to be taken followed by a second
subsequent checkpoint and then that thread began executing
in a scouting phase, the second IFU would re-fetch the
instructions executed after taking the second checkpoint—
i.e., the youngest checkpoint of the two checkpoints. (This
scenario is described in more detail below in conjunction with
FIG. 6B.) As noted above, in some embodiments, commit unit
320 may specify the instructions to be re-fetched.

As noted above, when core 300 is executing instructions in
a scouting phase, issue unit 318, in one embodiment, is con-
figured to issue instructions from the instruction bufter 316
that were fetched by the primary IFU 312 without issuing any
instructions re-fetched by the secondary IFU 312. For
example, in one embodiment, if buffer 316A is storing
instructions fetched by IFU 312A and IFU 312A is the pri-
mary IFU, issue unit 318 is configured to issue instructions
from buffer 316A without issuing instructions from buffer
316B. In one embodiment, issue unit 318 is configured to
initiate issuing re-fetched instructions in response to receiv-
ing an instruction from commit unit 320. For example, in one
embodiment, if issue unit 318 receives an indication from
commit unit 320 that core 300 is ending a scouting phase,
issue unit 318 may begin issuing re-fetched instructions from
buffer 316B. In some embodiments, the received indication
sent by commit unit 320 is referred to as a pipeline clear
signal.

Although embodiments of core 300 may use separate [FUs
312 to fetch and re-fetch instructions, in other embodiments,
core 300 may implement the same mechanism by allocating
fetch bandwidth in a shared fetch unit 312. For example, the
shared fetch unit 312 may initially be fetching instructions of
a thread that are being executed in a speculative phase. Once
the shared fetch unit 312 receives an indication to re-fetch
instructions, the shared fetch unit 312, in one embodiment, is
configured to redirect fetch bandwidth from fetching instruc-
tions that are to be executed in the scouting phase to re-
fetching instructions that are to be executed after ending the
scouting phase. For example, in some embodiment, the
shared fetch unit 312 may be configured to time slice fetching
such that it alternates between fetching instructions on odd
clock cycles and re-fetching instructions on even clock
cycles. In various embodiments, the shared fetch unit 312
may employ similar techniques such as those employed by
IFU 312A and IFU 312B.

By fetching instructions while simultaneously re-fetching
instructions, processor 10, in some embodiments, can begin
issuing those instructions upon ending a scouting phase with-
out having to re-fetch and decode those instructions. Thus, in
some instances, processor 10 may have a lesser restart latency
than other processors that fetch instructions during a scouting
phase and then initiate re-fetching those instructions after
ending the scouting phase.

A block diagram illustrating one embodiment of a method
for reducing pipeline restart latency by initiating re-fetching
instructions in response to determining to execute a thread in
a scouting phase is described below in conjunction with FIG.
6A.

Turning now to FIG. 4, one embodiment of a processor
core 400 (which may be included within processor 10 in some
embodiments) configured to reduce pipeline restart latency

US 9,086,889 B2

23

by initiating re-fetching instructions in response to determin-
ing that a commit operation is to be attempted with respect to
one or more deferred instructions is shown. As will be
described below, in some embodiments, core 400 is config-
ured to end a scouting phase after performing the commit
operation. By initiating re-fetching of instructions upon
determining that a commit operation is to be attempted, core
400 can begin fetching instructions before ending a scouting
phase. As a result, core 400 can initiate executing re-fetched
instructions as soon as it ends a scouting phase—thus, reduc-
ing core 400’s restart latency.

In the illustrated embodiment, core 400 includes an execu-
tion pipeline 410, commit unit 420, and one or more deferred
queues 430. As noted above, execution pipeline 410 is repre-
sentative of circuitry that is configured to execute instruc-
tions. In the illustrated embodiment, execution pipeline 410
includes instruction fetch units (IFUs) 412A and 412B and
issue unit 418. In other embodiments, execution pipeline 410
may include a single IFU 412 (as opposed to multiple ones).
Invarious embodiments, execution pipeline 410 includes one
or more additional structures including execution units 235
and 240, load store unit 245, FPG 255, or other structures
such as those shown within core 100 in FIG. 2. (In some
embodiments, commit unit 420 and/or deferred queue 430
may also be considered as being part of execution pipeline
410). In various embodiments, elements 412-430 may oper-
ate in a similar manner as elements 200-275 described in FIG.
2.

In one embodiment, IFUs 412 are configured to fetch
instructions for execution in pipeline 410. In some embodi-
ments, [FUs 412 are configured to operate as primary and
secondary IFUs when core 400 is executing instructions in a
scouting phase (such as described above in conjunction with
FIG. 3). For example, if core 400 is executing a thread in a
scouting phase, IFU 412A may fetch instructions of a thread
that are to be executed in the scouting phase. [FU 412B may
re-fetch instructions of that thread in parallel with IFU 412B,
where the re-fetched instructions are to be subsequently
executed in a non-scouting phase. In other embodiments in
which core 400 includes a single IFU 412 (e.g., [FU 412A),
the single IFU 412 is configured to perform both fetching and
re-fetching by allocating fetch bandwidth between fetching
and re-fetching instructions. In one embodiment, the IFU 412
that is re-fetching instructions is configured to re-fetch the
instructions that were previously executed in the scouting
phase. In some embodiments in which core 400 supports
speculative execution, the IFU 412 that is re-fetching instruc-
tions is configured to re-fetch instructions executed since the
last checkpoint that was taken. In various embodiments, [FUs
412 may be coupled to respective decode units that, in turn,
are coupled to respective store buffers, such as those
described in FIG. 3.

In one embodiment, issue unit 418 is configured to issue
instructions for execution in pipeline 410. In some embodi-
ments, issue unit 418 may be configured to operate in a
similar manner as issue unit 318 described above in FIG. 3. In
various embodiments, issue unit 418 is configured to issue
deferred instructions from one or more deferred buffers 430
described below. (As noted above, deferred instructions are
instructions that waiting for one or more operands in order to
be executed or are instructions that are dependent on other
deferred instructions.) In one embodiment, issue unit 418 is
configured to issue a given deferred instruction from a
deferred queue 430 once the data that the instruction depends
upon, becomes available (e.g., is retrieved from memory).

In one embodiment, commit unit 420 is configured to cause
results of instructions executed in pipeline 410 to be commit-

10

15

20

25

30

35

40

45

50

55

60

65

24

ted to an architectural state of the processor (i.e., retired). In
some embodiments, commit unit 420 is also configured to
determine whether a thread is be executed in normal phase,
speculative phase, or scouting phase. In one embodiment,
commit unit 420 is configured to send a pipeline clear signal
to units with pipeline 410 upon core 400 ending scouting
phase. In various embodiments, commit unit 420 may include
trap-handling logic configured to implement various func-
tionality of TL.U 275 described above. In some embodiments,
commit unit 420 may function in a similar manner as commit
unit 320 described above.

In one embodiment, deferred queues (DQ) 430 are config-
ured to store instructions that have been deferred. As noted
above, in one embodiment, issue unit 418 is configured to
retrieve a given instruction from a deferred queue 430 and
issue it for execution once the requested operands become
available for that instruction. Issue unit 418 may also issue
any dependent instructions that can be executed at that time.
In various embodiments, instructions issued from deferred
queue 430 are executed within a separate thread—i.e., a
“behind thread.” In some embodiments, deferred queues 430
are configured to send an indication to commit unit 420,
specifying that one or more instructions are being issued. In
one embodiment, each deferred queue 430 is configured to
identify the number of remaining instructions that are stored
in that queue.

Once all the instructions in a given deferred queue 430 have
been executed, commit unit 420, in one embodiment, is con-
figured to perform a “commit operation” to cause the results
ofthose deferred instructions to be committed such that archi-
tectural state is updated. In some instances, the commit opera-
tion is completed successfully. In other instances, the
attempted commit operation is unsuccessful. For example,
the last deferred instruction in a given deferred queue 430
may miss again and need to be re-deferred because the cach-
eline storing data for that instruction may have been evicted
by another cacheline before that data could be used. Thus, it
may not be possible to know ahead of time if a commit
operation will be successful or not. As will be described
below, IFUs 412 may be instructed to initiate re-fetching
instructions in response to determining that a commit opera-
tion is to be attempted—e.g., when a few instructions are left
in a given deferred queue 430. That way, re-fetching can be
initiated before the commit operation is completed if it is
successful.

Consider the following situation in which a “commit
operation” is performed.

In one embodiment, core 400 may start execution in a
non-speculative phase. In such a phase, all instructions are
retired in order and up-date the architectural register file as
well as a working register file. The DQs 430 and the specu-
lative register files may not be used. When the first deferrable
instruction is encountered, core 400, in one embodiment,
takes a checkpoint of the architectural state (called the “com-
mitted checkpoint™) and starts a speculative phase. In one
embodiment, the deferrable instruction is placed in a first DQ
430 and its destination register is marked as not available
(“NA”). Subsequent deferrable instructions may also be
placed in the DQ 430 and their destination registers are
marked as NA. In one embodiment, subsequent retirable
instructions are executed and speculatively retired. The reti-
rable instructions may write their results to a working register
file and a speculative register file and may clear the NA bits
for the destination registers.

In one embodiment, core 400 continues to execute instruc-
tions in this manner until one of the deferred instructions can
beretired (e.g., the data returns for a load miss). At this point,

US 9,086,889 B2

25

in one embodiment, one thread of execution, called the
“ahead thread”, continues to fetch and execute new instruc-
tions while a separate thread of execution, called the “behind
thread”, starts executing the instructions from the first DQ
430. Each instruction executed by the behind thread may
again be classified as being either deferrable or retirable.
Deferrable instructions may be re-inserted into the same DQ
from which they were read and their destination registers may
be marked as NA. Retirable instructions may write their
results to a working register file and may clear the NA bits for
the destination registers. In addition, certain retirable instruc-
tions may also update a speculative register file and the cor-
responding NA bits.

At any given time, in one embodiment, the ahead thread
writes the results of its retirable instructions to a current
speculative register file 1 and places its deferrable instructions
in the corresponding DQi 430. Based on policy decisions, the
ahead thread, in one embodiment, can choose to take a specu-
lative checkpoint (if the hardware resources are available) and
start using the next speculative register file and DQ 430 at any
time. For example, the ahead thread could detect that DQi430
is nearly full and therefore choose to take a speculative check-
point i and start using speculative register file i+1 and DQi+1
430. In any case, the ahead thread, in one embodiment, takes
a speculative checkpoint i before the behind thread can start
executing instructions from DQi 430.

At any given time, the behind thread may attempt to
execute instructions from the oldest DQ 430. In particular,
assuming that the oldest DQ 430 is DQi 430, the behind
thread may wait until at least one of the instructions in DQi
430 can be retired, at which point the behind thread executes
all of the instructions from DQi 430, redeferring them as
necessary. In one embodiment, once all of the instructions in
DQi 430 have been speculatively retired, the committed
checkpoint is discarded, speculative register file i becomes
the new committed checkpoint, and speculative register file i
is freed (and can thus be used by the ahead thread when
needed). As noted above, this operation may be referred to as
a “commit operation.”

If the ahead thread begins executing in a scouting phase
prior to the commit operation being attempted, commit unit
420, in one embodiment, is configured to instruct one or more
of'the IFUs 412 to initiate re-fetching one or more instructions
in response to determining that a commit operation is to be
attempted. In one embodiment, commit unit 420 is configured
to determine that a commit operation is to be attempted by
receiving an indication that deferred instructions are being
issued from a given deferred queue 430. As noted above, in
some embodiments, the indication may specity that the num-
ber of instructions remaining in the deferred queue 430,
where commit unit 420 is configured to initiate re-fetching if
that number falls below a predetermined threshold. For
example, if the predetermined threshold is two instructions,
commit unit 420 may initiate re-fetching instructions once a
given deferred queue 430 has less than two instructions. In
one embodiment, the predetermined threshold may be a static
value (e.g., this value may hardwired). In other embodiments,
commit unit 420 may be configured to adjust this threshold in
order to insure that re-fetched instruction are available to be
issued upon ending the scouting phase. In various embodi-
ments, commit unit 420 may be configured to determine that
a commit operation is to be attempted based on other criteria,
such as receiving an indication that a cache request for a given
deferred instruction has been serviced.

By initiating re-fetching instructions in response to deter-
mining that a commit operation is to be attempted, processor
10 can begin re-fetching instructions before it ends a scouting

10

15

20

25

30

35

40

45

50

55

60

65

26

phase. Then, in some embodiments, processor 10 can begin
executing those re-fetched instructions as soon as it ends a
scouting phase. Thus, processor 10 may have a smaller restart
penalty than other processors that re-fetch instructions after
ending a scouting phase.

A block diagram illustrating one embodiment of a method
for reducing pipeline restart latency by initiating re-fetching
instructions in response to determining that a commit opera-
tion is to be attempted with respect to one or more deferred
instructions is described below in conjunction with FIG. 7A.

Turning now to FIG. 5, one embodiment of a processor
core 500 (which may be included within processor 10 in some
embodiments) configured to reduce pipeline restart latency
by initiating re-fetching instructions in response to receiving
an indication that a request for a set of data has been received
by a cache is shown. In some instances, core 500 may have a
lesser restart latency than processors that initiate re-fetching
instructions after a requested set of data has been received
(i.e., the cache request has been serviced).

Inthe illustrated embodiment, processor 10 includes a core
500 that includes an execution pipeline 510 and commit unit
520. As noted above, execution pipeline 510 is representative
of circuitry that is configured to execute instructions. As
shown, execution pipeline 510 includes an instruction fetch
unit (IFU) 512 and memory interface unit 514 that, in turn,
includes cache 530A. Processor 10 also includes a cache
530B that is external to core 500. In various embodiments,
execution pipeline 410 includes one or more additional struc-
tures including an additional IFU (e.g., 512A and 512B),
execution units 235 and 240, FPG 255, or other structures
such as those shown within core 100 in FIG. 2. (In some
embodiments, commit unit 520 may also be considered as
being part of execution pipeline 510). In various embodi-
ments, elements 512-530 may operate in a similar manner as
elements 200-275 described in FIG. 2.

In one embodiment, IFU 512 is configured to fetch instruc-
tions for execution in pipeline 510. In some embodiments,
core 500 includes multiple IFUs 512 that are configured to
operate as primary and secondary IFUs when core 500 is
operating in a scouting phase (as described in conjunction
with FIG. 3). In other embodiments in which core 500
includes a shared IFU 512, that IFU 512 is configured to
alternately perform both fetching and re-fetching by allocat-
ing fetch bandwidth between fetching and re-fetching
instructions. In some embodiments, IFU 512 is configured to
re-fetch the instructions that were previously fetched and
executed but not committed. In other embodiments in which
core 500 supports speculative execution, IFU 512 is config-
ured to re-fetch instructions executed since the last check-
point that was taken.

In one embodiment, memory interface unit 514 is config-
ured to perform load and store operations with memory—
e.g., cache memory, RAM, etc. In various embodiments,
memory interface unit 514 corresponds to LSU 245 described
in FIG. 2. In some embodiments, memory interface unit 514
is configured to issue a cache request to cache 530A in
response to receiving a load instruction. If the request misses
in cache 530A, memory interface unit 514, in one embodi-
ment, is configured to issue a second request to cache 530B.
In some embodiments, memory interface unit 514 is config-
ured to send an indication to commit unit 520 specifying that
acache request has missed in cache 530 A and/or cache 530B.

In one embodiment, caches 530A and 5308 are configured
to store data that may be requested by executing instructions.
In one embodiment, cache 530A is an L1 that is located
within core 500. In some embodiments, cache 530A corre-
sponds to data cache 250 shown in FIG. 2. In one embodi-

US 9,086,889 B2

27

ment, cache 530B is an L2 cache that is located external to
core 500. In some embodiments, cache 530B corresponds to
L2 cache 105 shown in FI1G. 1. In other embodiments, caches
530 may be located elsewhere and/or correspond to different
cache levels—e.g., caches 530A and 530B may be .2 and [.3
caches, respectively, both caches 530A and 530B may be
located within core 500, etc. In one embodiment, cache 5308
is configured to send an indication acknowledging that it
received a cache request from memory interface unit 514. In
some embodiments, cache 530B is configured to send the
indication without having determined whether the requested
data is available in the cache 530B or not—i.e., whether the
request has produced a cache miss or a cache hit. As will be
described below, commit unit 520, in some embodiments,
may initiate re-fetching instructions in response to such an
acknowledgment.

In one embodiment, commit unit 520 is configured to cause
results of instructions executed in pipeline 510 to be commit-
ted to an architectural state of the processor (i.e., retired). In
various embodiments, commit unit 520 is configured to deter-
mine whether a thread should be executed in a normal phase,
a speculative phase, or a scouting phase. In some embodi-
ments, commit unit 520 is configured to send a pipeline clear
signal to units within pipeline 510 upon core 500 ending a
scouting phase. In various embodiments, commit unit 520
may include trap-handling logic configured to implement
various functionality of TLU 275 described above. In some
embodiments, commit unit 520 may implement functionality
of commit unit 320 described above.

As noted above, in one embodiment, commit unit 520 is
configured to instruct IFU 512 to initiate re-fetching of
instructions in response to receiving an indication that a
request sent to cache 530B has been received by that cache.
For example, in one embodiment, core 500 may be executing
athread in a scouting phase in response to an instruction (such
as a load instruction) in that thread causing a miss in cache
530A for a set of data. Memory interface unit 514 may then
send a request for the set of data to cache 530B. In response to
receiving an indication that the request has been received by
cache 530B, commit unit 520, in one embodiment, is config-
ured to instruct IFU 512 to initiate re-fetching one or more
instructions. In some embodiments, the instructions to be
re-fetched may include the instruction that caused the miss,
any dependent instructions of that instruction, other deferred
instructions, etc. In one embodiment, the instructions to be
re-fetched include those executed since the last checkpoint
that was taken. In some embodiments, commit unit 520 is
configured to cause IFU 512 to initiate re-fetching instruc-
tions by sending an indication to IFU 512, where the indica-
tion specifies that the request has been received by cache
530B. In one embodiment, commit unit 520 is configured to
cause [FU 512 to initiate re-fetching instructions by sending
an indication to IFU 512, where the indication specifies a
program counter of a first instruction to be re-fetched.

In one embodiment, after receiving the indication
acknowledging that cache 530B has received the request,
commit unit 520 is configured to receive a subsequent indi-
cation identifying whether the request hit or missed in cache
530B. In some embodiments, commit unit 520 may receive
this indication from cache 530B. In other embodiments, com-
mit unit 520 may receive this indication from other sources,
such memory interface unit 514. In one embodiment, if the
requested data is in cache 530B (i.e., a cache hit), commit unit
520 is configured to cause core 500 to end the scouting phase
and to restart pipeline 510 including initiating execution of
the re-fetched instructions. In some embodiments, commit
unit 520 is configured to restart pipeline 510 by sending a

10

15

20

25

30

35

40

45

50

55

60

28

pipeline clear signal to one or more units in pipeline 510. In
one embodiment, if the requested data is not in cache 530B
(i.e., a cache miss), commit unit 520 is configured to cause
core 500 to continue executing the thread in the scouting
phase until commit unit 520 receives a subsequent indication
that the cache request has been serviced (e.g., memory inter-
face unit 514 has received the requested data). Once commit
unit 520 has received an indication of the request being ser-
viced, commit unit 520, in one embodiment, is configured to
cause core 500 to end the scouting phase and to restart pipe-
line 510 including initiating execution of the re-fetched
instructions.

By initiating re-fetching instructions in response to receiv-
ing an indication that a request for a set of data has been
received by a cache, processor 10, in some embodiments, can
end a scouting phase as soon as the requested data comes back
and begin executing re-fetched instructions without having to
re-fetch them. As a result, in some instances, processor 10
may have a shorter restart time than processors that initiate
re-fetching instructions after a cache request has been ser-
viced.

A block diagram illustrating one embodiment of a method
for reducing pipeline restart latency by initiating re-fetching
instructions in response to receiving an indication that a
request for a set of data has been received by a cache is
described below in conjunction with FIG. 8A.

Turning now to FIG. 6 A, one embodiment of a method 600
for reducing pipeline restart latency by initiating re-fetching
instructions in response to determining to execute a thread in
a scouting phase is depicted. In one embodiment, processor
10 is configured to perform method 600 using multiple [FUs.
In another embodiment, processor 10 is configured to per-
form method 600 using a single IFU that performs fetching
and re-fetching. As shown, method 600 includes steps 610-
640.

In step 610, an IFU (e.g., an IFU 312) of processor 10
fetches instructions of a thread. In one embodiment, proces-
sor 10 may be executing this thread in a normal phase (i.e., in
a non-speculative, non-scouting phase). In other embodi-
ments, processor 10 may be executing this thread in a specu-
lative phase—e.g., because the thread included one or more
instructions that caused one or more checkpoints. In some
embodiments in which the IFU is a first of two or more IFUs
(e.g., IFUs 312A and 312B), asecond IFU (e.g., IFU 312B) of
processor 10 may be fetching instructions for one or more
other threads executing in a non-scouting phase. In various
embodiments, processor may be storing instructions fetched
by the IFU in an instruction buffer (e.g., instruction buffer
316).

In step 620, an IFU of processor 10 receives an indication
that the thread has begun executing in a scouting phase. In one
embodiment, the IFU used in step 620 may be a different [FU
(e.g., IFU 312B) than the I[FU (e.g., IFU 312A) used in step
610. In some embodiments, multiple IFUs may receive this
indication, where the indication specifies that one of the [FUs
is to perform step 630. In other embodiments, the [FU used in
step 620 is the same IFU (e.g., a shared IFU 312) that is
fetching instructions in step 610. (As noted above, processor
10 may enter a scouting phase for any of variety of condi-
tions—e.g., upon detecting an additional checkpoint that is
not supported in hardware, upon a deferred queue being
unable to store any additional deferred instructions, upon a
store queue (e.g., in LSU 245) being unable to store any
additional store requests, etc.). In some embodiments, this
indication is an instruction to initiate re-fetching instructions
(alternately, the indication may be sent in conjunction with
such an instruction). In one embodiment, this indication may

US 9,086,889 B2

29

specify the thread that has transitioned to executing in a
scouting phase. In some embodiments, this indication may
identify instructions to be re-fetched. In one embodiment, a
commit unit (e.g., commit unit 320) of processor 10 sends this
indication to the IFU.

In step 630, an IFU of processor 10 initiates re-fetching one
or more instructions of the thread in parallel with the fetching
of instructions in step 610. In one embodiment, the [FU used
in step 630 may be a different IFU (e.g., [FU 312B) than the
IFU (e.g., IFU 312A) used in step 610. In other embodiments,
the IFU used in step 630 is the same [FU (e.g., a shared [FU
312) that is fetching instructions in step 610. In one embodi-
ment, the [FU was previously operating in a standby mode. In
another embodiment, the IFU was fetching instructions for
another thread executing in a non-scouting phase. In some
embodiments, the IFU re-fetches instructions that were pre-
viously fetched by the IFU used in step 610 and executed in a
scouting phase. In some embodiments, the IFU re-fetches
instructions executed since the last checkpoint that was taken.
Inone embodiment, the commit unit specifies the instructions
to be re-fetched by identifying the memory address (e.g., the
program counter) of the first instruction to be re-fetched. In
various embodiments, instructions re-fetched by the second
IFU are decoded (e.g., using decode unit 314B) and stored in
an instruction buffer (e.g., instruction buffer 316B) until pro-
cessor 10 ends the scouting phase. In one embodiment, the
re-fetched instructions are decoded by a decode unit that is
different than the decode unit that decodes instructions
fetched in step 610. In some embodiments, the re-fetched
instructions are stored in an instruction buffer that is different
than the instruction buffer that stores instructions fetched in
step 610.

In step 640, processor 10 initiates re-execution of the re-
fetched instructions upon ending the scouting phase. As noted
above, processor 10 may end a scouting phase upon deter-
mining that the condition that caused the processor to enter
the scouting phase being resolved. In one embodiment, pro-
cessor 10 initiates re-execution by sending a signal to an issue
unit (e.g., issue unit 318), where the signal specifies that the
issue unit is to initiate issuing instructions from the second
buffer (e.g., buffer 316B) storing the re-fetched instructions.
In some embodiments, the commit unit of processor 10 may
send this signal as a pipeline clear signal (or in conjunction
with a pipeline clear signal).

In various embodiments, processor 10 may periodically
repeat method 600 as processor 10 transitions between
executing threads in scouting and non-scouting phases. In
some embodiments in which multiple IFUs are used, the first
and second IFUs may periodically alternate roles between a
primary IFU that fetches instructions for execution in scout-
ing phase and a secondary [FU that re-fetches instructions for
execution in non-scouting phase.

One example illustrating the application of method 600 is
described next.

Turning now to FIG. 6B, an example 650 of reducing
pipeline restart latency by initiating re-fetching instructions
in response to determining to execute a thread in a scouting
phase is depicted. In example 650, processor 10 executes a
program that includes instructions that cause processor 10 to
take two checkpoints and then begin executing in a scouting
phase. As shown, program includes the instructions i1-j9.

The program begins with the load instruction il in the
ahead thread that is executable to place a value into registerr1.
The program then includes comparison instruction i2, branch
instructions i3, and two more load instructions i4 and i5.
Upon executing load instruction 16, processor 10, in some
embodiments, may detect a cache miss and begin specula-

10

15

20

25

30

35

40

45

50

55

60

65

30

tively executing the program within the ahead thread by tak-
ing a checkpoint. The instruction 16 and its dependent instruc-
tions 18 and 19 are then placed in a deferred queue DQ 1 to be
subsequently executed within the behind thread once the
cache request that caused the miss is serviced.

Program execution continues with execution of instruc-
tions i7 and i10-i12, which, in some embodiments, are only
committed speculatively until execution of 16, i8, and 19 can
be completed. Upon executing branch instruction 113, pro-
cessor 10, in some embodiments, may take a second check-
point and continue executing instructions based on a pre-
dicted outcome of that branch instruction. If the outcome of
the branch instruction 113 is mispredicted, processor 10 can
resume execution from the second checkpoint (i.e., ati13). In
some embodiments, processor 10 may also begin placing any
newly encountered deferred instructions in a second deferred
queue DQ2.

Upon executing load instruction j6, processor 10 may
detect another cache miss. In some embodiments, processor
10 transitions to executing the ahead thread in a scouting
phase in response to encountering this second miss. (As noted
above, processor 10 may enter a scouting phase for any of a
variety of reasons. For example, DQ2 may not have sufficient
space to store deferred instructions j6 and its dependent
instructions j8 and j9.) From this point forward, processor 10
will continue executing instructions j6-j9 without committing
their results. In one embodiment, processor 10 also initiates
re-fetching instructions executed since the last checkpoint
that was taken (i.e., instructions i13 onwards). As noted
above, in some embodiments, these instructions are
re-fetched by a second IFU of processor 10. In other embodi-
ments, these instructions are re-fetched by a shared IFU that
redirects fetch bandwidth.

In this example, when processor 10 begins execution of
instruction j7 in the ahead thread, the data that instruction 16
is waiting on becomes available for use (i.e., 16’s cache
request has been serviced). As a result, processor 10 also
begins executing instruction 16 and its dependent instructions
i8 and 19 in the behind thread. In one embodiment, once
processor 10 has executed instructions i6, i8, and 19, proces-
sor 10 commits the results of instructions 16-112 and releases
the resources used in taking the first checkpoint, such as DQ
1, speculative registers used to store the checkpoint, etc. In
some instances, releasing those resources may resolve the
condition that causes processor 10 begin executing in the
scouting phase. For example, processor 10 may have begun
executing in the scouting phase because it was unable to take
a third checkpoint, but now that the resources have been
released, it can. As a result, in some embodiments, processor
10 may end the scouting phase and begin execution of re-
fetched instructions.

Turning now to FIG. 7A, one embodiment of a method 700
for reducing pipeline restart latency by initiating re-fetching
instructions in response to determining a commit operation is
to be attempted with respect to one or more deferred instruc-
tions is depicted. As shown, method 700 includes steps 710-
750.

In step 710, processor 10 executes an ahead thread and a
behind thread. For example, processor 10 may execute a load
instruction that causes a miss in a cache. As a result, in one
embodiment, processor 10 may store the load instruction and
any dependent instructions in a deferred queue to be executed
within the behind thread. The non-deferred instructions may
be executed within the ahead thread.

In step 720, processor 10 subsequently transitions to
executing the ahead thread in a scouting phase. As noted
above, processor 10 may begin executing instructions in a

US 9,086,889 B2

31

scouting phase for any of variety of reasons. In some embodi-
ments, the determination to execute the ahead thread in a
scouting phase is made by a control unit (e.g., commit unit
420) of processor 10.

In step 730, a control unit (e.g., commit unit 420) of pro-
cessor 10 receives an indication that a commit operation is to
be attempted with respect to one or more deferred instructions
of the behind thread. In one embodiment, the control unit
determines that a commit operation is to be attempted in
response to receiving an indication specifying that deferred
instructions are being issued from a deferred queue (e.g., one
of'deferred queues 430). In various embodiments, the control
unit determines that a commit operation is to be attempted in
response to the indication specifying that the number of
instructions remaining in a deferred queue is below a prede-
termined threshold. In other embodiments, the control unit
may determine that a commit operation is to be attempted in
response to other criteria such as receiving an indication
specifying a cache has serviced requests for one or more of
the deferred instructions stored in the deferred queue.

In step 740, the control unit initiates, prior to the commit
operation being attempted, fetching one or more instructions
of the ahead thread that were previously fetched while pro-
cessor 10 was executing the ahead thread in the scouting
phase. In one embodiment, if the instructions were previously
fetched by a first IFU (e.g., IFU 412A) of processor 10, the
control unit initiates re-fetching those instructions using a
second IFU (e.g., IFU 412B) different from the first IFU,
where the second IFU fetches instructions in parallel with the
first IFU. In other embodiments, the same IFU may perform
both fetching and re-fetching. In some embodiments, the [IFU
re-fetches instructions executed since the last checkpoint that
was taken. In one embodiment, the control unit may specify
the instructions to be re-fetched by identifying the thread that
is executing in the scouting phase. In some embodiments, the
control unit may specify the instructions to be re-fetched by
identifying the memory address (e.g., the program counter) of
the first instruction to be re-fetched. In various embodiments,
step 740 may be performed in a similar manner as step 630
described above.

In step 750, processor 10 initiates execution of the re-
fetched instructions after processor 10 performs the commit
operation and ends the scouting phase. As noted above, pro-
cessor 10 may end a scouting phase when the condition that
caused the processor to enter the scouting phase is resolved.
In some embodiments, step 750 may be performed in a simi-
lar manner as step 640 described above.

One example illustrating the application of method 700 is
described next.

Turning now to FIG. 7B, an example 760 of reducing
pipeline clear latency by re-fetching instructions in response
to determining that a commit operation is to be attempted with
respect to one or more deferred instructions is depicted. In
example 760, processor 10 executes a program that includes
instructions that cause processor 10 to take two checkpoints
and then begin executing in a scouting phase. As will be
described, processor 10 may re-fetch instructions upon deter-
mining that a commit operation is to be attempted.

Program execution begins with processor executing
instructions i1-i5. Upon executing load instruction i6, proces-
sor 10, in some embodiments, detects a cache miss and takes
afirst checkpoint. At this point, in one embodiment, processor
10 places the instruction 16 and its dependent instructions i8
and 19 in a deferred queue DQ 1 to be subsequently executed
within a behind thread once the cache request that caused the
miss is serviced. Processor 10 continues to execute the non-
deferred instructions i7 and 110-12 in the ahead thread.

10

15

20

25

30

35

40

45

50

55

60

65

32

Upon executing branch instruction i13, processor 10, in
one embodiment, may take a second checkpoint and continue
executing instructions based on the predicted outcome of that
branch instruction. As noted above, if the outcome of the
branch instruction 113 is mispredicted, processor 10 can
resume execution from the second checkpoint. In some
embodiments, processor 10 may also begin placing any newly
encountered deferred instructions in a second deferred queue
DQ2.

Upon executing load instruction j6, processor 10 may
detect another cache miss and transition to executing the
ahead thread in scouting phase. From this point forward,
processor 10 executes instructions j6-j9 without committing
their results.

In this example, when processor 10 begins execution of
instruction j7 in the ahead thread, the data on which instruc-
tion 16 is waiting becomes available for use (i.e., 16’s cache
request has been serviced). As a result, processor 10 retrieves
instruction i6 from deferred queue DQ1 and begins executing
it in the behind thread. Dependent instructions i8 and 19,
however, remain stored in DQ1. In one embodiment, in
response to DQ1 having to two or less instructions, processor
10 initiates re-fetching instructions executed since the last
taken checkpoint (i.e., instructions 113 onwards). After pro-
cessor 10 has executed instructions i6, 18, and 19, processor 10
may perform a commit operation and end the scouting phase.
At that point, processor 10 may initiate execution of the
re-fetched instructions.

Turning now to FIG. 8 A, one embodiment of a method 800
for reducing pipeline restart latency by initiating re-fetching
instructions in response to receiving an indication that a
request for a set of data has been received by a cache is
depicted. As shown method 800 includes steps 810-860.

In step 810, processor 10 executes a thread in a scouting
phase in response to an instruction (e.g., a load instruction) in
the thread causing a miss in a cache (e.g., cache 530A) for a
set of data. As noted above, processor 10 may be begin
executing a thread in a scouting phase for a variety of reasons.
In some embodiments, a commit unit (e.g., commit unit 520)
of'processor 10 is configured to determine whether the thread
is to be executed in a scouting phase and to cause processor 10
to transition to executing a thread in the scouting phase.

In step 820, a memory interface unit (e.g., memory inter-
face unit 514) of processor 10 sends a request for the set of
data to a second cache (e.g., cache 530B) in response to the
miss in the first cache. In one embodiment, in response to
receiving the request, the second cache responds by sending
an indication acknowledging receipt of the request before
determining whether the request has hit or missed. In some
embodiments, the second cache sends this indication to the
commit unit of processor 10—e.g., directly or via the memory
interface unit of processor 10. In one embodiment, the com-
mit unit sends a corresponding indication to an IFU of pro-
cessor 10.

Instep 830, the IFU (e.g., [FU 512) of processor 10 initiates
re-fetching the instruction that caused the miss in response to
receiving an indication that the request has been received by
the second cache, where the IFU begins the re-fetching prior
to the second cache completing the request. In one embodi-
ment, the IFU that is re-fetching instructions is also fetching
instructions for the thread that is executing in the scouting
phase. In other embodiments, processor 10 uses a first IFU as
a primary IFU to fetch instructions that are to be executed in
the scouting phase and uses a second IFU to re-fetch instruc-
tions in parallel with the first IFU, where the re-fetched
instructions include the instruction that caused the miss. In
one embodiment, the IFU may re-fetch additional instruc-

US 9,086,889 B2

33

tions that were previously fetched and executed but not com-
mitted (e.g., those fetched by the first IFU and executed in the
scouting phase). In some embodiments, the IFU may re-fetch
instructions executed since the last checkpoint that was taken.
In one embodiment, the commit unit may specify the instruc-
tions to be re-fetched by identifying the thread that is execut-
ing in the scouting phase. In some embodiments, the commit
unit may specity the instructions to be re-fetched by identi-
fying the memory address (e.g., the program counter) of the
first instruction to be re-fetched—e.g., the instruction that
caused the miss. In various embodiments, step 740 may be
performed in a similar manner as step 630 described above.

In step 840, a commit unit (e.g., commit unit 520) of
processor 10 receives an indication specifying whether the
request for the set of data hit or missed in the second cache. In
one embodiment, the commit unit receives this indication
from the second cache (e.g., cache 530B). In another embodi-
ment, the commit unit recites this indication from a memory
interface unit (e.g., memory interface unit 514) of processor
10. If the request hit in the cache, method 800 proceeds to step
850. Otherwise, method 800 proceeds to step 860.

In step 850, processor 10 ends the scouting phase and
initiates execution of the re-fetched instructions in response
to the request hitting in the second cache. In some embodi-
ments, step 840 may be performed in a similar manner as step
640 described above.

In step 860, processor 10 continues to execute the thread in
the scouting phase until it receives an indication that the
request has been serviced. At that point, in one embodiment,
processor 10 ends the scouting phase and initiates execution
of the re-fetched instructions.

One example illustrating the application of method 800 is
described next.

Turning now to FIG. 8B, an example 870 of reducing
pipeline restart latency by initiating re-fetching instructions
in response to receiving an indication that a request for a set of
data has been received by a cache is depicted. In example 870,
processor 10 executes a program that includes instructions
that cause processor 10 to take two checkpoints and then
begin executing in a scouting phase. As will be described,
processor 10 may re-fetch instructions upon receiving an
acknowledgment indicating that a request for a set of data has
been received by a cache.

Program execution begins with processor executing
instructions i1-i5. Upon executing load instruction i6, proces-
sor 10, in some embodiments, detects a cache miss and takes
afirst checkpoint. At this point, in one embodiment, processor
10 places the instruction 16 and its dependent instructions i8
and 19 in a deferred queue DQ 1 to be subsequently executed
within a behind thread once the cache request that caused the
miss is serviced. Processor 10 continues to execute the non-
deferred instructions i7 and 110-12 in the ahead thread.

Upon executing branch instruction 113, processor 10, in
one embodiment, may take a second checkpoint and continue
executing instructions based on the predicted outcome of that
branch instruction. As noted above, if the outcome of the
branch instruction i13 is mispredicted, processor 10 can
resume execution from the second checkpoint. In some
embodiments, processor 10 may also begin placing any newly
encountered deferred instructions in a second deferred queue
DQ2.

Upon executing load instruction j6, processor 10 may
detect another cache miss in a first cache of processor 10 (e.g.,
cache 530A) and transition to executing the ahead thread in a
scouting phase. In response to this miss in the first cache,
processor 10, in one embodiment, sends a second request to a

10

15

20

25

30

35

40

45

50

55

60

65

34

second cache (e.g., cache 530B) that is configured to
acknowledge receipt of the request.

In this example, when processor 10 begins execution of
instruction j7 in the ahead thread, processor 10, in one
embodiment, receives the acknowledgement from the second
cache indicating that it has received the request for load
instruction j6. (In other embodiments, processor 10 may, of
course, receive this acknowledgment at a later (or earlier)
point.) In response to receiving the acknowledgment, proces-
sor 10, in one embodiment, initiates re-fetching instructions
executed since the last taken checkpoint (i.e., instructions 113
onwards). After processor 10 has committed the results of
instructions 16, 8, and 19, processor 10, in one embodiment,
may end the scouting phase and initiate execution of the
re-fetched instructions.

Exemplary System Embodiment

As described above, in some embodiments, processor 10 of
FIG. 1 may be configured to interface with a number of
external devices. One embodiment of a system including
processor 10 is illustrated in FIG. 9. In the illustrated embodi-
ment, system 900 includes an instance of processor 10, shown
as processor 10a, that is coupled to a system memory 910, a
peripheral storage device 920 and a boot device 930. System
900 is coupled to a network 940, which is in turn coupled to
another computer system 950. In some embodiments, system
900 may include more than one instance of the devices
shown. In various embodiments, system 900 may be config-
ured as a rack-mountable server system, a standalone system,
or in any other suitable form factor. In some embodiments,
system 900 may be configured as a client system rather than
a server system.

In some embodiments, system 900 may be configured as a
multiprocessor system, in which processor 10a may option-
ally be coupled to one or more other instances of processor 10,
shown in FIG. 9 as processor 105. For example, processors
10a-b may be coupled to communicate via their respective
coherent processor interfaces 160.

In various embodiments, system memory 910 may com-
prise any suitable type of system memory as described above,
such as FB-DIMM, DDR/DDR2/DDR3/DDR4 SDRAM, or
RDRAM®, for example. System memory 910 may include
multiple discrete banks of memory controlled by discrete
memory interfaces in embodiments of processor 10 that pro-
vide multiple memory interfaces 130. Also, in some embodi-
ments, system memory 910 may include multiple different
types of memory.

Peripheral storage device 920, in various embodiments,
may include support for magnetic, optical, or solid-state stor-
age media such as hard drives, optical disks, nonvolatile
RAM devices, etc. In some embodiments, peripheral storage
device 920 may include more complex storage devices such
as disk arrays or storage area networks (SANs), which may be
coupled to processor 10 via a standard Small Computer Sys-
tem Interface (SCSI), a Fibre Channel interface, a Firewire®
(IEEE 1394) interface, or another suitable interface. Addi-
tionally, it is contemplated that in other embodiments, any
other suitable peripheral devices may be coupled to processor
10, such as multimedia devices, graphics/display devices,
standard input/output devices, etc. In one embodiment,
peripheral storage device 920 may be coupled to processor 10
via peripheral interface(s) 150 of FIG. 1.

As described previously, in one embodiment boot device
930 may include a device such as an FPGA or ASIC config-
ured to coordinate initialization and boot of processor 10,
such as from a power-on reset state. Additionally, in some
embodiments boot device 930 may include a secondary com-

US 9,086,889 B2

35

puter system configured to allow access to administrative
functions such as debug or test modes of processor 10.

Network 940 may include any suitable devices, media
and/or protocol for interconnecting computer systems, such
as wired or wireless Ethernet, for example. In various
embodiments, network 940 may include local area networks
(LANs), wide area networks (WANSs), telecommunication
networks, or other suitable types of networks. In some
embodiments, computer system 950 may be similar to or
identical in configuration to illustrated system 900, whereas
in other embodiments, computer system 950 may be substan-
tially differently configured. For example, computer system
950 may be a server system, a processor-based client system,
a stateless “thin” client system, a mobile device, etc. In some
embodiments, processor 10 may be configured to communi-
cate with network 940 via network interface(s) 160 of FIG. 1.

Although specific embodiments have been described
above, these embodiments are not intended to limit the scope
of the present disclosure, even where only a single embodi-
ment is described with respect to a particular feature.
Examples of features provided in the disclosure are intended
to be illustrative rather than restrictive unless stated other-
wise. The above description is intended to cover such alter-
natives, modifications, and equivalents as would be apparent
to a person skilled in the art having the benefit of this disclo-
sure.

The scope of the present disclosure includes any feature or
combination of features disclosed herein (either explicitly or
implicitly), or any generalization thereof, whether or not it
mitigates any or all of the problems addressed herein. Accord-
ingly, new claims may be formulated during prosecution of
this application (or an application claiming priority thereto)
to any such combination of features. In particular, with ref-
erence to the appended claims, features from dependent
claims may be combined with those of the independent
claims and features from respective independent claims may
be combined in any appropriate manner and not merely in the
specific combinations enumerated in the appended claims.

What is claimed is:

1. A processor, comprising:

a first instruction fetch unit configured to initiate re-fetch-
ing instructions of a thread in response to receiving a first
indication that the thread has begun executing in a scout-
ing phase; and

wherein the first instruction fetch unit is configured to
re-fetch one or more of the instructions of the thread in
response to a second indication that the scouting phase is
ending, wherein the first instruction fetch unit is config-
ured to re-fetch the one or more instructions while the
processor fetches and executes instructions in the scout-
ing phase, and wherein the processor is configured to
execute the re-fetched one or more instructions after the
scouting phase ends.

2. The processor of claim 1, wherein the first instruction
fetch unit is configured to alternate between fetching instruc-
tions of the thread that are to be executed in the scouting phase
and the re-fetching of the instructions of the thread that are to
be executed after the scouting phase ends.

3. The processor of claim 1, further comprising:

a second instruction fetch unit configured to operate in
parallel with the first instruction fetch unit and to fetch
instructions of the thread that are to be executed during
the scouting phase.

4. The processor of claim 3, further comprising:

a first instruction buffer configured to store the one or more
instructions re-fetched by the first instruction fetch unit,
wherein the processor is configured to execute the re-

15

20

30

40

45

60

36

fetched one or more instructions stored in the first
instruction buffer after receiving an indication that the
thread has stopped executing in the scouting phase; and

a second instruction buffer distinct from the first instruc-
tion buffer, wherein the second instruction buffer is con-
figured to store instructions fetched by the second
instruction fetch unit.

5. The processor of claim 3, wherein the processor is con-
figured to execute the re-fetched one or more instructions
upon the processor ending the scouting phase; and
wherein the second instruction fetch unit is configured to:

receive an indication specifying that the thread has begun
executing in another scouting phase; and

in response to receiving the indication specifying that the
thread has begun executing in the other scouting phase,
re-fetch one or more additional instructions of the
thread.

6. The processor of claim 1, further comprising:

a commit unit configured to provide the first indication to
the first instruction fetch unit in response to determining
that the thread is to be executed in the scouting phase,
and wherein the first indication includes a program
counter of a first instruction of the one or more instruc-
tions of the thread to be re-fetched.

7. The processor of claim 1, further comprising:

a deferred queue that is configured to store up to N instruc-
tions, including a load instruction that causes a check-
point to be taken by the processor and further including
one or more dependent instructions of the load instruc-
tion, wherein the processor is configured to execute the
thread in the scouting phase in response to the deferred
queue storing N instructions; and

wherein the processor is configured to retrieve the load
instruction from the deferred queue and to issue the load
instruction upon receiving an indication that a cache
request of the load instruction has been serviced.

8. A processor, comprising:

a first instruction fetch unit configured to fetch instructions
for execution;

a control unit;

wherein the processor is configured to execute instructions
for an ahead thread and a behind thread, and wherein the
processor is configured to initiate executing the ahead
thread in a scouting phase in response to a deferred
instruction of the behind thread;

wherein the control unit is configured to receive an indica-
tion that a commit operation is to be attempted with
respect to the deferred instruction; and

wherein the control unit is configured to cause, in response
to the indication prior to the commit operation being
attempted, fetching one or more instructions of the
ahead thread that were previously fetched while the
processor was executing the ahead thread in the scouting
phase, wherein the processor is configured to fetch the
previously fetched one or more instructions while the
processor executes the ahead thread, and wherein the
processor is configured to execute the previously fetched
one or more instructions after the scouting phase ends.

9. The processor of claim 8, further comprising:

a deferred queue configured to store one or more deferred
instructions including the deferred instruction; and

wherein the control unit is configured to cause fetching of
the previously fetched one or more instructions of the
ahead thread in response to the received indication
specifying that at least one of the deferred instruction is
being removed from the deferred queue for execution.

US 9,086,889 B2

37

10. The processor of claim 9, wherein the received indica-
tion further specifies a number of instructions remaining in
the deferred queue, and wherein the control unit is configured
to cause fetching the previously fetched one or more instruc-
tions of the ahead thread in response to the number of instruc-
tions being below a predetermined threshold.
11. The processor of claim 8, wherein the processor is
configured to execute the ahead thread in the scouting phase
by executing instructions fetched by the first instruction fetch
unit, and wherein the control unit is configured to cause
fetching the previously fetched one or more instructions of
the ahead thread by instructing the first instruction fetch unit
to re-fetch the previously fetched one or more instructions of
the ahead thread.
12. The processor of claim 8, further comprising:
a second instruction fetch unit; and
wherein the processor is configured to execute the ahead
thread in the scouting phase by executing instructions
fetched by the first instruction fetch unit, and wherein
the control unit is configured to cause fetching the pre-
viously fetched one or more instructions of the ahead
thread by instructing the second instruction fetch unit to
re-fetch the previously fetched one or more instructions
of the ahead thread.
13. The processor of claim 8, wherein the control unit is
configured to cause the processor to execute the fetched one
or more instructions after the commit operation is performed.
14. The processor of claim 8, wherein the control unit is
configured to cause fetching the previously fetched one or
more instructions by providing an indication that includes a
program counter to the first instruction fetch unit.
15. A processor, comprising:
a first instruction fetch unit; and
a memory interface unit;
wherein the processor is configured to execute a thread in a
scouting phase in response to execution of a fetched
instruction in the thread causing a miss in a first cache for
a set of data;

wherein the memory interface unit is configured to send, in
response to the miss in the first cache, a request for the
set of data to a second cache; and

wherein the first instruction fetch unit is configured to

re-fetch the instruction in response to receiving an indi-
cation that the request has been received by the second
cache, and wherein the first instruction fetch unit is
configured to re-fetch the instruction prior to the second

10

15

20

25

30

35

40

45

38

cache completing the request and while the processor
executes the thread in the scouting phase, wherein the
processor is configured to execute the re-fetched instruc-
tion after the scouting phase ends.

16. The processor of claim 15, wherein the processor is
configured to execute the re-fetched instruction in response to
receiving the requested set of data from the second cache, and
wherein the processor is configured to continue executing the
thread in the scouting phase in response to receiving an indi-
cation that the set of data has missed in the second cache.

17. The processor of claim 15, further comprising:

a commit unit configured to determine whether the thread
is to be executed in the scouting phase and to send the
indication to the first instruction fetch unit in response to
receiving information specifying that the request has
been received by the second cache.

18. The processor of claim 17, wherein the indication
specifies a memory address at which the instruction is stored,
and wherein the first instruction fetch unit is configured to
re-fetch the instruction from the specified memory address.

19. The processor of claim 15, further comprising:

a plurality of processing cores; and

wherein the first cache is located within a first of the plu-
rality of processing cores, and wherein the second cache
is located externally to the first processing core.

20. The processor of claim 15, further comprising:

a second instruction fetch unit; and

wherein the processor is configured to execute the thread in
the scouting phase by executing instructions fetched by
the second instruction fetch unit; and

wherein the first and second instruction fetch units are
configured to operate in parallel.

21. A method, comprising:

an instruction fetch unit of processor receiving an indica-
tion that a thread has begun executing in a scouting
phase; and

in response to the received indication, the instruction fetch
unit re-fetching instructions of the thread in response to
an indication that to the thread is ending the scouting
phase, wherein the instruction fetch unit re-fetches one
or more of the instructions while the processor fetches
and executes instructions in the scouting phase, and
wherein the processor is configured to execute the one or
more instructions after the scouting phase ends.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,086,889 B2 Page 1 of 1
APPLICATION NO. 1 12/768641

DATED :July 21, 2015

INVENTORC(S) : Karlsson et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the specification,

In column 15, line 61, delete “checking” and insert -- checking. --, therefor.
In column 15, line 66, delete “checking” and insert -- checking. --, therefor.
In column 20, line 52, delete “note™ and insert -- noted --, therefor.

In column 24, line 3, delete “thread is be” insert -- thread is to be --.

In the claims,

In column 38, line 39, in claim 21, after “that™ delete “to”.

Signed and Sealed this
Seventeenth Day of May, 2016

Debatle 7

Michelle K. Lee
Director of the United States Patent and Trademark Office

